aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/effects/chorus.cpp
blob: 13a35c545af84acd558f3eefd59946e28ccc53f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
/**
 * OpenAL cross platform audio library
 * Copyright (C) 2013 by Mike Gorchak
 * This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 *  License along with this library; if not, write to the
 *  Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 * Or go to http://www.gnu.org/copyleft/lgpl.html
 */

#include "config.h"

#include <cstdlib>

#include <cmath>
#include <algorithm>

#include "alMain.h"
#include "alcontext.h"
#include "alAuxEffectSlot.h"
#include "alError.h"
#include "alu.h"
#include "filters/biquad.h"
#include "vector.h"


namespace {

static_assert(AL_CHORUS_WAVEFORM_SINUSOID == AL_FLANGER_WAVEFORM_SINUSOID, "Chorus/Flanger waveform value mismatch");
static_assert(AL_CHORUS_WAVEFORM_TRIANGLE == AL_FLANGER_WAVEFORM_TRIANGLE, "Chorus/Flanger waveform value mismatch");

enum class WaveForm {
    Sinusoid,
    Triangle
};

void GetTriangleDelays(ALint *delays, ALsizei offset, ALsizei lfo_range, ALfloat lfo_scale,
                       ALfloat depth, ALsizei delay, ALsizei todo)
{
    std::generate_n<ALint*RESTRICT>(delays, todo,
        [&offset,lfo_range,lfo_scale,depth,delay]() -> ALint
        {
            offset = (offset+1)%lfo_range;
            return fastf2i((1.0f - std::abs(2.0f - lfo_scale*offset)) * depth) + delay;
        }
    );
}

void GetSinusoidDelays(ALint *delays, ALsizei offset, ALsizei lfo_range, ALfloat lfo_scale,
                       ALfloat depth, ALsizei delay, ALsizei todo)
{
    std::generate_n<ALint*RESTRICT>(delays, todo,
        [&offset,lfo_range,lfo_scale,depth,delay]() -> ALint
        {
            offset = (offset+1)%lfo_range;
            return fastf2i(std::sin(lfo_scale*offset) * depth) + delay;
        }
    );
}

struct ChorusState final : public EffectState {
    al::vector<ALfloat,16> mSampleBuffer;
    ALsizei mOffset{0};

    ALsizei mLfoOffset{0};
    ALsizei mLfoRange{1};
    ALfloat mLfoScale{0.0f};
    ALint mLfoDisp{0};

    /* Gains for left and right sides */
    struct {
        ALfloat Current[MAX_OUTPUT_CHANNELS]{};
        ALfloat Target[MAX_OUTPUT_CHANNELS]{};
    } mGains[2];

    /* effect parameters */
    WaveForm mWaveform{};
    ALint mDelay{0};
    ALfloat mDepth{0.0f};
    ALfloat mFeedback{0.0f};


    ALboolean deviceUpdate(const ALCdevice *device) override;
    void update(const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props, const EffectTarget target) override;
    void process(ALsizei samplesToDo, const ALfloat (*RESTRICT samplesIn)[BUFFERSIZE], ALfloat (*RESTRICT samplesOut)[BUFFERSIZE], ALsizei numChannels) override;

    DEF_NEWDEL(ChorusState)
};

ALboolean ChorusState::deviceUpdate(const ALCdevice *Device)
{
    const ALfloat max_delay = maxf(AL_CHORUS_MAX_DELAY, AL_FLANGER_MAX_DELAY);
    size_t maxlen;

    maxlen = NextPowerOf2(float2int(max_delay*2.0f*Device->Frequency) + 1u);
    if(maxlen <= 0) return AL_FALSE;

    if(maxlen != mSampleBuffer.size())
    {
        mSampleBuffer.resize(maxlen);
        mSampleBuffer.shrink_to_fit();
    }

    std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f);
    for(auto &e : mGains)
    {
        std::fill(std::begin(e.Current), std::end(e.Current), 0.0f);
        std::fill(std::begin(e.Target), std::end(e.Target), 0.0f);
    }

    return AL_TRUE;
}

void ChorusState::update(const ALCcontext *Context, const ALeffectslot *Slot, const ALeffectProps *props, const EffectTarget target)
{
    static constexpr ALsizei mindelay = MAX_RESAMPLE_PADDING << FRACTIONBITS;

    switch(props->Chorus.Waveform)
    {
        case AL_CHORUS_WAVEFORM_TRIANGLE:
            mWaveform = WaveForm::Triangle;
            break;
        case AL_CHORUS_WAVEFORM_SINUSOID:
            mWaveform = WaveForm::Sinusoid;
            break;
    }

    /* The LFO depth is scaled to be relative to the sample delay. Clamp the
     * delay and depth to allow enough padding for resampling.
     */
    const ALCdevice *device{Context->Device};
    auto frequency = static_cast<ALfloat>(device->Frequency);
    mDelay = maxi(float2int(props->Chorus.Delay*frequency*FRACTIONONE + 0.5f), mindelay);
    mDepth = minf(props->Chorus.Depth * mDelay, static_cast<ALfloat>(mDelay - mindelay));

    mFeedback = props->Chorus.Feedback;

    /* Gains for left and right sides */
    ALfloat coeffs[2][MAX_AMBI_COEFFS];
    CalcAngleCoeffs(al::MathDefs<float>::Pi()*-0.5f, 0.0f, 0.0f, coeffs[0]);
    CalcAngleCoeffs(al::MathDefs<float>::Pi()* 0.5f, 0.0f, 0.0f, coeffs[1]);

    mOutBuffer = target.Main->Buffer;
    mOutChannels = target.Main->NumChannels;
    ComputePanGains(target.Main, coeffs[0], Slot->Params.Gain, mGains[0].Target);
    ComputePanGains(target.Main, coeffs[1], Slot->Params.Gain, mGains[1].Target);

    ALfloat rate{props->Chorus.Rate};
    if(!(rate > 0.0f))
    {
        mLfoOffset = 0;
        mLfoRange = 1;
        mLfoScale = 0.0f;
        mLfoDisp = 0;
    }
    else
    {
        /* Calculate LFO coefficient (number of samples per cycle). Limit the
         * max range to avoid overflow when calculating the displacement.
         */
        ALsizei lfo_range = float2int(minf(frequency/rate + 0.5f, static_cast<ALfloat>(INT_MAX/360 - 180)));

        mLfoOffset = float2int(static_cast<ALfloat>(mLfoOffset)/mLfoRange*lfo_range + 0.5f) % lfo_range;
        mLfoRange = lfo_range;
        switch(mWaveform)
        {
            case WaveForm::Triangle:
                mLfoScale = 4.0f / mLfoRange;
                break;
            case WaveForm::Sinusoid:
                mLfoScale = al::MathDefs<float>::Tau() / mLfoRange;
                break;
        }

        /* Calculate lfo phase displacement */
        ALint phase{props->Chorus.Phase};
        if(phase < 0) phase = 360 + phase;
        mLfoDisp = (mLfoRange*phase + 180) / 360;
    }
}

void ChorusState::process(ALsizei SamplesToDo, const ALfloat (*RESTRICT SamplesIn)[BUFFERSIZE], ALfloat (*RESTRICT SamplesOut)[BUFFERSIZE], ALsizei NumChannels)
{
    const auto bufmask = static_cast<ALsizei>(mSampleBuffer.size()-1);
    const ALfloat feedback{mFeedback};
    const ALsizei avgdelay{(mDelay + (FRACTIONONE>>1)) >> FRACTIONBITS};
    ALfloat *RESTRICT delaybuf{mSampleBuffer.data()};
    ALsizei offset{mOffset};
    ALsizei i, c;
    ALsizei base;

    for(base = 0;base < SamplesToDo;)
    {
        const ALsizei todo = mini(256, SamplesToDo-base);
        ALint moddelays[2][256];
        alignas(16) ALfloat temps[2][256];

        if(mWaveform == WaveForm::Sinusoid)
        {
            GetSinusoidDelays(moddelays[0], mLfoOffset, mLfoRange, mLfoScale, mDepth, mDelay,
                              todo);
            GetSinusoidDelays(moddelays[1], (mLfoOffset+mLfoDisp)%mLfoRange, mLfoRange, mLfoScale,
                              mDepth, mDelay, todo);
        }
        else /*if(mWaveform == WaveForm::Triangle)*/
        {
            GetTriangleDelays(moddelays[0], mLfoOffset, mLfoRange, mLfoScale, mDepth, mDelay,
                              todo);
            GetTriangleDelays(moddelays[1], (mLfoOffset+mLfoDisp)%mLfoRange, mLfoRange, mLfoScale,
                              mDepth, mDelay, todo);
        }
        mLfoOffset = (mLfoOffset+todo) % mLfoRange;

        for(i = 0;i < todo;i++)
        {
            // Feed the buffer's input first (necessary for delays < 1).
            delaybuf[offset&bufmask] = SamplesIn[0][base+i];

            // Tap for the left output.
            ALint delay{offset - (moddelays[0][i]>>FRACTIONBITS)};
            ALfloat mu{(moddelays[0][i]&FRACTIONMASK) * (1.0f/FRACTIONONE)};
            temps[0][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay  ) & bufmask],
                                delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask],
                                mu);

            // Tap for the right output.
            delay = offset - (moddelays[1][i]>>FRACTIONBITS);
            mu = (moddelays[1][i]&FRACTIONMASK) * (1.0f/FRACTIONONE);
            temps[1][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay  ) & bufmask],
                                delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask],
                                mu);

            // Accumulate feedback from the average delay of the taps.
            delaybuf[offset&bufmask] += delaybuf[(offset-avgdelay) & bufmask] * feedback;
            offset++;
        }

        for(c = 0;c < 2;c++)
            MixSamples(temps[c], NumChannels, SamplesOut, mGains[c].Current,
                       mGains[c].Target, SamplesToDo-base, base, todo);

        base += todo;
    }

    mOffset = offset;
}


struct ChorusStateFactory final : public EffectStateFactory {
    EffectState *create() override;
};

EffectState *ChorusStateFactory::create()
{ return new ChorusState{}; }

} // namespace

EffectStateFactory *ChorusStateFactory_getFactory(void)
{
    static ChorusStateFactory ChorusFactory{};
    return &ChorusFactory;
}


void ALchorus_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
{
    ALeffectProps *props = &effect->Props;
    switch(param)
    {
        case AL_CHORUS_WAVEFORM:
            if(!(val >= AL_CHORUS_MIN_WAVEFORM && val <= AL_CHORUS_MAX_WAVEFORM))
                SETERR_RETURN(context, AL_INVALID_VALUE,, "Invalid chorus waveform");
            props->Chorus.Waveform = val;
            break;

        case AL_CHORUS_PHASE:
            if(!(val >= AL_CHORUS_MIN_PHASE && val <= AL_CHORUS_MAX_PHASE))
                SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus phase out of range");
            props->Chorus.Phase = val;
            break;

        default:
            alSetError(context, AL_INVALID_ENUM, "Invalid chorus integer property 0x%04x", param);
    }
}
void ALchorus_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
{ ALchorus_setParami(effect, context, param, vals[0]); }
void ALchorus_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
{
    ALeffectProps *props = &effect->Props;
    switch(param)
    {
        case AL_CHORUS_RATE:
            if(!(val >= AL_CHORUS_MIN_RATE && val <= AL_CHORUS_MAX_RATE))
                SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus rate out of range");
            props->Chorus.Rate = val;
            break;

        case AL_CHORUS_DEPTH:
            if(!(val >= AL_CHORUS_MIN_DEPTH && val <= AL_CHORUS_MAX_DEPTH))
                SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus depth out of range");
            props->Chorus.Depth = val;
            break;

        case AL_CHORUS_FEEDBACK:
            if(!(val >= AL_CHORUS_MIN_FEEDBACK && val <= AL_CHORUS_MAX_FEEDBACK))
                SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus feedback out of range");
            props->Chorus.Feedback = val;
            break;

        case AL_CHORUS_DELAY:
            if(!(val >= AL_CHORUS_MIN_DELAY && val <= AL_CHORUS_MAX_DELAY))
                SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus delay out of range");
            props->Chorus.Delay = val;
            break;

        default:
            alSetError(context, AL_INVALID_ENUM, "Invalid chorus float property 0x%04x", param);
    }
}
void ALchorus_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
{ ALchorus_setParamf(effect, context, param, vals[0]); }

void ALchorus_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
{
    const ALeffectProps *props = &effect->Props;
    switch(param)
    {
        case AL_CHORUS_WAVEFORM:
            *val = props->Chorus.Waveform;
            break;

        case AL_CHORUS_PHASE:
            *val = props->Chorus.Phase;
            break;

        default:
            alSetError(context, AL_INVALID_ENUM, "Invalid chorus integer property 0x%04x", param);
    }
}
void ALchorus_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
{ ALchorus_getParami(effect, context, param, vals); }
void ALchorus_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
{
    const ALeffectProps *props = &effect->Props;
    switch(param)
    {
        case AL_CHORUS_RATE:
            *val = props->Chorus.Rate;
            break;

        case AL_CHORUS_DEPTH:
            *val = props->Chorus.Depth;
            break;

        case AL_CHORUS_FEEDBACK:
            *val = props->Chorus.Feedback;
            break;

        case AL_CHORUS_DELAY:
            *val = props->Chorus.Delay;
            break;

        default:
            alSetError(context, AL_INVALID_ENUM, "Invalid chorus float property 0x%04x", param);
    }
}
void ALchorus_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
{ ALchorus_getParamf(effect, context, param, vals); }

DEFINE_ALEFFECT_VTABLE(ALchorus);


/* Flanger is basically a chorus with a really short delay. They can both use
 * the same processing functions, so piggyback flanger on the chorus functions.
 */
EffectStateFactory *FlangerStateFactory_getFactory(void)
{ return ChorusStateFactory_getFactory(); }


void ALflanger_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
{
    ALeffectProps *props = &effect->Props;
    switch(param)
    {
        case AL_FLANGER_WAVEFORM:
            if(!(val >= AL_FLANGER_MIN_WAVEFORM && val <= AL_FLANGER_MAX_WAVEFORM))
                SETERR_RETURN(context, AL_INVALID_VALUE,, "Invalid flanger waveform");
            props->Chorus.Waveform = val;
            break;

        case AL_FLANGER_PHASE:
            if(!(val >= AL_FLANGER_MIN_PHASE && val <= AL_FLANGER_MAX_PHASE))
                SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger phase out of range");
            props->Chorus.Phase = val;
            break;

        default:
            alSetError(context, AL_INVALID_ENUM, "Invalid flanger integer property 0x%04x", param);
    }
}
void ALflanger_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
{ ALflanger_setParami(effect, context, param, vals[0]); }
void ALflanger_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
{
    ALeffectProps *props = &effect->Props;
    switch(param)
    {
        case AL_FLANGER_RATE:
            if(!(val >= AL_FLANGER_MIN_RATE && val <= AL_FLANGER_MAX_RATE))
                SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger rate out of range");
            props->Chorus.Rate = val;
            break;

        case AL_FLANGER_DEPTH:
            if(!(val >= AL_FLANGER_MIN_DEPTH && val <= AL_FLANGER_MAX_DEPTH))
                SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger depth out of range");
            props->Chorus.Depth = val;
            break;

        case AL_FLANGER_FEEDBACK:
            if(!(val >= AL_FLANGER_MIN_FEEDBACK && val <= AL_FLANGER_MAX_FEEDBACK))
                SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger feedback out of range");
            props->Chorus.Feedback = val;
            break;

        case AL_FLANGER_DELAY:
            if(!(val >= AL_FLANGER_MIN_DELAY && val <= AL_FLANGER_MAX_DELAY))
                SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger delay out of range");
            props->Chorus.Delay = val;
            break;

        default:
            alSetError(context, AL_INVALID_ENUM, "Invalid flanger float property 0x%04x", param);
    }
}
void ALflanger_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
{ ALflanger_setParamf(effect, context, param, vals[0]); }

void ALflanger_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
{
    const ALeffectProps *props = &effect->Props;
    switch(param)
    {
        case AL_FLANGER_WAVEFORM:
            *val = props->Chorus.Waveform;
            break;

        case AL_FLANGER_PHASE:
            *val = props->Chorus.Phase;
            break;

        default:
            alSetError(context, AL_INVALID_ENUM, "Invalid flanger integer property 0x%04x", param);
    }
}
void ALflanger_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
{ ALflanger_getParami(effect, context, param, vals); }
void ALflanger_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
{
    const ALeffectProps *props = &effect->Props;
    switch(param)
    {
        case AL_FLANGER_RATE:
            *val = props->Chorus.Rate;
            break;

        case AL_FLANGER_DEPTH:
            *val = props->Chorus.Depth;
            break;

        case AL_FLANGER_FEEDBACK:
            *val = props->Chorus.Feedback;
            break;

        case AL_FLANGER_DELAY:
            *val = props->Chorus.Delay;
            break;

        default:
            alSetError(context, AL_INVALID_ENUM, "Invalid flanger float property 0x%04x", param);
    }
}
void ALflanger_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
{ ALflanger_getParamf(effect, context, param, vals); }

DEFINE_ALEFFECT_VTABLE(ALflanger);