1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
|
/**
* OpenAL cross platform audio library
* Copyright (C) 2018 by Raul Herraiz.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <cmath>
#include <cstdlib>
#include <array>
#include <complex>
#include <algorithm>
#include "alMain.h"
#include "alcontext.h"
#include "alAuxEffectSlot.h"
#include "alError.h"
#include "alu.h"
#include "alcomplex.h"
namespace {
using complex_d = std::complex<double>;
#define HIL_SIZE 1024
#define OVERSAMP (1<<2)
#define HIL_STEP (HIL_SIZE / OVERSAMP)
#define FIFO_LATENCY (HIL_STEP * (OVERSAMP-1))
/* Define a Hann window, used to filter the HIL input and output. */
/* Making this constexpr seems to require C++14. */
std::array<ALdouble,HIL_SIZE> InitHannWindow()
{
std::array<ALdouble,HIL_SIZE> ret;
/* Create lookup table of the Hann window for the desired size, i.e. HIL_SIZE */
for(ALsizei i{0};i < HIL_SIZE>>1;i++)
{
ALdouble val = std::sin(al::MathDefs<double>::Pi() * i / ALdouble{HIL_SIZE-1});
ret[i] = ret[HIL_SIZE-1-i] = val * val;
}
return ret;
}
alignas(16) const std::array<ALdouble,HIL_SIZE> HannWindow = InitHannWindow();
struct FshifterState final : public EffectState {
/* Effect parameters */
ALsizei mCount{};
ALsizei mPhaseStep{};
ALsizei mPhase{};
ALdouble mLdSign{};
/*Effects buffers*/
ALfloat mInFIFO[HIL_SIZE]{};
complex_d mOutFIFO[HIL_SIZE]{};
complex_d mOutputAccum[HIL_SIZE]{};
complex_d mAnalytic[HIL_SIZE]{};
complex_d mOutdata[BUFFERSIZE]{};
alignas(16) ALfloat mBufferOut[BUFFERSIZE]{};
/* Effect gains for each output channel */
ALfloat mCurrentGains[MAX_OUTPUT_CHANNELS]{};
ALfloat mTargetGains[MAX_OUTPUT_CHANNELS]{};
ALboolean deviceUpdate(const ALCdevice *device) override;
void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override;
void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) override;
DEF_NEWDEL(FshifterState)
};
ALboolean FshifterState::deviceUpdate(const ALCdevice *UNUSED(device))
{
/* (Re-)initializing parameters and clear the buffers. */
mCount = FIFO_LATENCY;
mPhaseStep = 0;
mPhase = 0;
mLdSign = 1.0;
std::fill(std::begin(mInFIFO), std::end(mInFIFO), 0.0f);
std::fill(std::begin(mOutFIFO), std::end(mOutFIFO), complex_d{});
std::fill(std::begin(mOutputAccum), std::end(mOutputAccum), complex_d{});
std::fill(std::begin(mAnalytic), std::end(mAnalytic), complex_d{});
std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f);
std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f);
return AL_TRUE;
}
void FshifterState::update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target)
{
const ALCdevice *device{context->Device};
ALfloat step{props->Fshifter.Frequency / static_cast<ALfloat>(device->Frequency)};
mPhaseStep = fastf2i(minf(step, 0.5f) * FRACTIONONE);
switch(props->Fshifter.LeftDirection)
{
case AL_FREQUENCY_SHIFTER_DIRECTION_DOWN:
mLdSign = -1.0;
break;
case AL_FREQUENCY_SHIFTER_DIRECTION_UP:
mLdSign = 1.0;
break;
case AL_FREQUENCY_SHIFTER_DIRECTION_OFF:
mPhase = 0;
mPhaseStep = 0;
break;
}
ALfloat coeffs[MAX_AMBI_CHANNELS];
CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f, coeffs);
mOutTarget = {target.Main->Buffer, target.Main->NumChannels};
ComputePanGains(target.Main, coeffs, slot->Params.Gain, mTargetGains);
}
void FshifterState::process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei /*numInput*/, const al::span<FloatBufferLine> samplesOut)
{
static constexpr complex_d complex_zero{0.0, 0.0};
ALfloat *RESTRICT BufferOut = mBufferOut;
ALsizei j, k, base;
for(base = 0;base < samplesToDo;)
{
const ALsizei todo{mini(HIL_SIZE-mCount, samplesToDo-base)};
ASSUME(todo > 0);
/* Fill FIFO buffer with samples data */
k = mCount;
for(j = 0;j < todo;j++,k++)
{
mInFIFO[k] = samplesIn[0][base+j];
mOutdata[base+j] = mOutFIFO[k-FIFO_LATENCY];
}
mCount += todo;
base += todo;
/* Check whether FIFO buffer is filled */
if(mCount < HIL_SIZE) continue;
mCount = FIFO_LATENCY;
/* Real signal windowing and store in Analytic buffer */
for(k = 0;k < HIL_SIZE;k++)
{
mAnalytic[k].real(mInFIFO[k] * HannWindow[k]);
mAnalytic[k].imag(0.0);
}
/* Processing signal by Discrete Hilbert Transform (analytical signal). */
complex_hilbert(mAnalytic, HIL_SIZE);
/* Windowing and add to output accumulator */
for(k = 0;k < HIL_SIZE;k++)
mOutputAccum[k] += 2.0/OVERSAMP*HannWindow[k]*mAnalytic[k];
/* Shift accumulator, input & output FIFO */
for(k = 0;k < HIL_STEP;k++) mOutFIFO[k] = mOutputAccum[k];
for(j = 0;k < HIL_SIZE;k++,j++) mOutputAccum[j] = mOutputAccum[k];
for(;j < HIL_SIZE;j++) mOutputAccum[j] = complex_zero;
for(k = 0;k < FIFO_LATENCY;k++)
mInFIFO[k] = mInFIFO[k+HIL_STEP];
}
/* Process frequency shifter using the analytic signal obtained. */
for(k = 0;k < samplesToDo;k++)
{
double phase = mPhase * ((1.0/FRACTIONONE) * al::MathDefs<double>::Tau());
BufferOut[k] = static_cast<float>(mOutdata[k].real()*std::cos(phase) +
mOutdata[k].imag()*std::sin(phase)*mLdSign);
mPhase += mPhaseStep;
mPhase &= FRACTIONMASK;
}
/* Now, mix the processed sound data to the output. */
MixSamples(BufferOut, samplesOut, mCurrentGains, mTargetGains, maxi(samplesToDo, 512), 0,
samplesToDo);
}
void Fshifter_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val)
{
switch(param)
{
case AL_FREQUENCY_SHIFTER_FREQUENCY:
if(!(val >= AL_FREQUENCY_SHIFTER_MIN_FREQUENCY && val <= AL_FREQUENCY_SHIFTER_MAX_FREQUENCY))
SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter frequency out of range");
props->Fshifter.Frequency = val;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter float property 0x%04x", param);
}
}
void Fshifter_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals)
{ Fshifter_setParamf(props, context, param, vals[0]); }
void Fshifter_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val)
{
switch(param)
{
case AL_FREQUENCY_SHIFTER_LEFT_DIRECTION:
if(!(val >= AL_FREQUENCY_SHIFTER_MIN_LEFT_DIRECTION && val <= AL_FREQUENCY_SHIFTER_MAX_LEFT_DIRECTION))
SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter left direction out of range");
props->Fshifter.LeftDirection = val;
break;
case AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION:
if(!(val >= AL_FREQUENCY_SHIFTER_MIN_RIGHT_DIRECTION && val <= AL_FREQUENCY_SHIFTER_MAX_RIGHT_DIRECTION))
SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter right direction out of range");
props->Fshifter.RightDirection = val;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter integer property 0x%04x", param);
}
}
void Fshifter_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals)
{ Fshifter_setParami(props, context, param, vals[0]); }
void Fshifter_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val)
{
switch(param)
{
case AL_FREQUENCY_SHIFTER_LEFT_DIRECTION:
*val = props->Fshifter.LeftDirection;
break;
case AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION:
*val = props->Fshifter.RightDirection;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter integer property 0x%04x", param);
}
}
void Fshifter_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals)
{ Fshifter_getParami(props, context, param, vals); }
void Fshifter_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val)
{
switch(param)
{
case AL_FREQUENCY_SHIFTER_FREQUENCY:
*val = props->Fshifter.Frequency;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter float property 0x%04x", param);
}
}
void Fshifter_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals)
{ Fshifter_getParamf(props, context, param, vals); }
DEFINE_ALEFFECT_VTABLE(Fshifter);
struct FshifterStateFactory final : public EffectStateFactory {
EffectState *create() override { return new FshifterState{}; }
EffectProps getDefaultProps() const noexcept override;
const EffectVtable *getEffectVtable() const noexcept override { return &Fshifter_vtable; }
};
EffectProps FshifterStateFactory::getDefaultProps() const noexcept
{
EffectProps props{};
props.Fshifter.Frequency = AL_FREQUENCY_SHIFTER_DEFAULT_FREQUENCY;
props.Fshifter.LeftDirection = AL_FREQUENCY_SHIFTER_DEFAULT_LEFT_DIRECTION;
props.Fshifter.RightDirection = AL_FREQUENCY_SHIFTER_DEFAULT_RIGHT_DIRECTION;
return props;
}
} // namespace
EffectStateFactory *FshifterStateFactory_getFactory()
{
static FshifterStateFactory FshifterFactory{};
return &FshifterFactory;
}
|