1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
/**
* OpenAL cross platform audio library
* Copyright (C) 2009 by Chris Robinson.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include "alMain.h"
#include "alFilter.h"
#include "alAuxEffectSlot.h"
#include "alError.h"
#include "alu.h"
typedef struct ALmodulatorState {
DERIVE_FROM_TYPE(ALeffectState);
void (*Process)(ALfloat*, const ALfloat*, ALsizei, const ALsizei, ALsizei);
ALsizei index;
ALsizei step;
ALfloat Gain[MAX_EFFECT_CHANNELS][MAX_OUTPUT_CHANNELS];
ALfilterState Filter[MAX_EFFECT_CHANNELS];
} ALmodulatorState;
static ALvoid ALmodulatorState_Destruct(ALmodulatorState *state);
static ALboolean ALmodulatorState_deviceUpdate(ALmodulatorState *state, ALCdevice *device);
static ALvoid ALmodulatorState_update(ALmodulatorState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props);
static ALvoid ALmodulatorState_process(ALmodulatorState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels);
DECLARE_DEFAULT_ALLOCATORS(ALmodulatorState)
DEFINE_ALEFFECTSTATE_VTABLE(ALmodulatorState);
#define WAVEFORM_FRACBITS 24
#define WAVEFORM_FRACONE (1<<WAVEFORM_FRACBITS)
#define WAVEFORM_FRACMASK (WAVEFORM_FRACONE-1)
static inline ALfloat Sin(ALsizei index)
{
return sinf(index*(F_TAU/WAVEFORM_FRACONE) - F_PI)*0.5f + 0.5f;
}
static inline ALfloat Saw(ALsizei index)
{
return (ALfloat)index / WAVEFORM_FRACONE;
}
static inline ALfloat Square(ALsizei index)
{
return (ALfloat)((index >> (WAVEFORM_FRACBITS - 1)) & 1);
}
#define DECL_TEMPLATE(func) \
static void Modulate##func(ALfloat *restrict dst, const ALfloat *restrict src,\
ALsizei index, const ALsizei step, ALsizei todo) \
{ \
ALsizei i; \
for(i = 0;i < todo;i++) \
{ \
index += step; \
index &= WAVEFORM_FRACMASK; \
dst[i] = src[i] * func(index); \
} \
}
DECL_TEMPLATE(Sin)
DECL_TEMPLATE(Saw)
DECL_TEMPLATE(Square)
#undef DECL_TEMPLATE
static void ALmodulatorState_Construct(ALmodulatorState *state)
{
ALuint i;
ALeffectState_Construct(STATIC_CAST(ALeffectState, state));
SET_VTABLE2(ALmodulatorState, ALeffectState, state);
state->index = 0;
state->step = 1;
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
ALfilterState_clear(&state->Filter[i]);
}
static ALvoid ALmodulatorState_Destruct(ALmodulatorState *state)
{
ALeffectState_Destruct(STATIC_CAST(ALeffectState,state));
}
static ALboolean ALmodulatorState_deviceUpdate(ALmodulatorState *UNUSED(state), ALCdevice *UNUSED(device))
{
return AL_TRUE;
}
static ALvoid ALmodulatorState_update(ALmodulatorState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props)
{
const ALCdevice *device = context->Device;
ALfloat cw, a;
ALsizei i;
if(props->Modulator.Waveform == AL_RING_MODULATOR_SINUSOID)
state->Process = ModulateSin;
else if(props->Modulator.Waveform == AL_RING_MODULATOR_SAWTOOTH)
state->Process = ModulateSaw;
else /*if(Slot->Params.EffectProps.Modulator.Waveform == AL_RING_MODULATOR_SQUARE)*/
state->Process = ModulateSquare;
state->step = fastf2i(props->Modulator.Frequency*WAVEFORM_FRACONE /
device->Frequency);
if(state->step == 0) state->step = 1;
/* Custom filter coeffs, which match the old version instead of a low-shelf. */
cw = cosf(F_TAU * props->Modulator.HighPassCutoff / device->Frequency);
a = (2.0f-cw) - sqrtf(powf(2.0f-cw, 2.0f) - 1.0f);
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
{
state->Filter[i].b0 = a;
state->Filter[i].b1 = -a;
state->Filter[i].b2 = 0.0f;
state->Filter[i].a1 = -a;
state->Filter[i].a2 = 0.0f;
}
STATIC_CAST(ALeffectState,state)->OutBuffer = device->FOAOut.Buffer;
STATIC_CAST(ALeffectState,state)->OutChannels = device->FOAOut.NumChannels;
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
ComputeFirstOrderGains(&device->FOAOut, IdentityMatrixf.m[i],
slot->Params.Gain, state->Gain[i]);
}
static ALvoid ALmodulatorState_process(ALmodulatorState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels)
{
const ALsizei step = state->step;
ALsizei index = state->index;
ALsizei base;
for(base = 0;base < SamplesToDo;)
{
ALfloat temps[2][128];
ALsizei td = mini(128, SamplesToDo-base);
ALsizei i, j, k;
for(j = 0;j < MAX_EFFECT_CHANNELS;j++)
{
ALfilterState_process(&state->Filter[j], temps[0], &SamplesIn[j][base], td);
state->Process(temps[1], temps[0], index, step, td);
for(k = 0;k < NumChannels;k++)
{
ALfloat gain = state->Gain[j][k];
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
for(i = 0;i < td;i++)
SamplesOut[k][base+i] += gain * temps[1][i];
}
}
for(i = 0;i < td;i++)
{
index += step;
index &= WAVEFORM_FRACMASK;
}
base += td;
}
state->index = index;
}
typedef struct ALmodulatorStateFactory {
DERIVE_FROM_TYPE(ALeffectStateFactory);
} ALmodulatorStateFactory;
static ALeffectState *ALmodulatorStateFactory_create(ALmodulatorStateFactory *UNUSED(factory))
{
ALmodulatorState *state;
NEW_OBJ0(state, ALmodulatorState)();
if(!state) return NULL;
return STATIC_CAST(ALeffectState, state);
}
DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALmodulatorStateFactory);
ALeffectStateFactory *ALmodulatorStateFactory_getFactory(void)
{
static ALmodulatorStateFactory ModulatorFactory = { { GET_VTABLE2(ALmodulatorStateFactory, ALeffectStateFactory) } };
return STATIC_CAST(ALeffectStateFactory, &ModulatorFactory);
}
void ALmodulator_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
if(!(val >= AL_RING_MODULATOR_MIN_FREQUENCY && val <= AL_RING_MODULATOR_MAX_FREQUENCY))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Modulator.Frequency = val;
break;
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
if(!(val >= AL_RING_MODULATOR_MIN_HIGHPASS_CUTOFF && val <= AL_RING_MODULATOR_MAX_HIGHPASS_CUTOFF))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Modulator.HighPassCutoff = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALmodulator_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
{
ALmodulator_setParamf(effect, context, param, vals[0]);
}
void ALmodulator_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
ALmodulator_setParamf(effect, context, param, (ALfloat)val);
break;
case AL_RING_MODULATOR_WAVEFORM:
if(!(val >= AL_RING_MODULATOR_MIN_WAVEFORM && val <= AL_RING_MODULATOR_MAX_WAVEFORM))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Modulator.Waveform = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALmodulator_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
{
ALmodulator_setParami(effect, context, param, vals[0]);
}
void ALmodulator_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
*val = (ALint)props->Modulator.Frequency;
break;
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
*val = (ALint)props->Modulator.HighPassCutoff;
break;
case AL_RING_MODULATOR_WAVEFORM:
*val = props->Modulator.Waveform;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALmodulator_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
{
ALmodulator_getParami(effect, context, param, vals);
}
void ALmodulator_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
*val = props->Modulator.Frequency;
break;
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
*val = props->Modulator.HighPassCutoff;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALmodulator_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
{
ALmodulator_getParamf(effect, context, param, vals);
}
DEFINE_ALEFFECT_VTABLE(ALmodulator);
|