summaryrefslogtreecommitdiffstats
path: root/Alc/hrtf.c
blob: e1f02ce70429be7f8baae2442efd9b57b0dbc707 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/**
 * OpenAL cross platform audio library
 * Copyright (C) 2011 by Chris Robinson
 * This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 *  License along with this library; if not, write to the
 *  Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 *  Boston, MA  02111-1307, USA.
 * Or go to http://www.gnu.org/copyleft/lgpl.html
 */

#include "config.h"

#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alSource.h"

/* External HRTF file format (LE byte order):
 *
 * ALchar   magic[8] = "MinPHR00";
 * ALuint   sampleRate;
 *
 * ALushort hrirCount; // Required value: 828
 * ALushort hrirSize;  // Required value: 32
 * ALubyte  evCount;   // Required value: 19
 *
 * ALushort evOffset[evCount]; // Required values:
 *   { 0, 1, 13, 37, 73, 118, 174, 234, 306, 378, 450, 522, 594, 654, 710, 755, 791, 815, 827 }
 *
 * ALushort coefficients[hrirCount][hrirSize];
 * ALubyte  delays[hrirCount]; // Element values must not exceed 127
 */

static const ALchar magicMarker[8] = "MinPHR00";

#define HRIR_COUNT 828
#define ELEV_COUNT 19

static const ALushort evOffset[ELEV_COUNT] = { 0, 1, 13, 37, 73, 118, 174, 234, 306, 378, 450, 522, 594, 654, 710, 755, 791, 815, 827 };
static const ALubyte azCount[ELEV_COUNT] = { 1, 12, 24, 36, 45, 56, 60, 72, 72, 72, 72, 72, 60, 56, 45, 36, 24, 12, 1 };

static struct Hrtf {
    ALuint sampleRate;
    ALshort coeffs[HRIR_COUNT][HRIR_LENGTH];
    ALubyte delays[HRIR_COUNT];
} Hrtf = {
    44100,
#include "hrtf_tables.inc"
};

// Calculate the elevation indices given the polar elevation in radians.
// This will return two indices between 0 and (ELEV_COUNT-1) and an
// interpolation factor between 0.0 and 1.0.
static void CalcEvIndices(ALfloat ev, ALuint *evidx, ALfloat *evmu)
{
    ev = (M_PI/2.0f + ev) * (ELEV_COUNT-1) / M_PI;
    evidx[0] = (ALuint)ev;
    evidx[1] = minu(evidx[0] + 1, ELEV_COUNT-1);
    *evmu = ev - evidx[0];
}

// Calculate the azimuth indices given the polar azimuth in radians.  This
// will return two indices between 0 and (azCount [ei] - 1) and an
// interpolation factor between 0.0 and 1.0.
static void CalcAzIndices(ALuint evidx, ALfloat az, ALuint *azidx, ALfloat *azmu)
{
    az = (M_PI*2.0f + az) * azCount[evidx] / (M_PI*2.0f);
    azidx[0] = (ALuint)az % azCount[evidx];
    azidx[1] = (azidx[0] + 1) % azCount[evidx];
    *azmu = az - floor(az);
}

// Calculates the normalized HRTF transition factor (delta) from the changes
// in gain and listener to source angle between updates.  The result is a
// normalized delta factor than can be used to calculate moving HRIR stepping
// values.
ALfloat CalcHrtfDelta(ALfloat oldGain, ALfloat newGain, const ALfloat olddir[3], const ALfloat newdir[3])
{
    ALfloat gainChange, angleChange;

    // Calculate the normalized dB gain change.
    newGain = maxF(newGain, 0.0001f);
    oldGain = maxF(oldGain, 0.0001f);
    gainChange = aluFabs(log10(newGain / oldGain) / log10(0.0001f));

    // Calculate the normalized listener to source angle change when there is
    // enough gain to notice it.
    angleChange = 0.0f;
    if(gainChange > 0.0001f || newGain > 0.0001f)
    {
        // No angle change when the directions are equal or degenerate (when
        // both have zero length).
        if(newdir[0]-olddir[0] || newdir[1]-olddir[1] || newdir[2]-olddir[2])
            angleChange = aluAcos(olddir[0]*newdir[0] +
                                  olddir[1]*newdir[1] +
                                  olddir[2]*newdir[2]) / M_PI;

    }

    // Use the largest of the two changes for the delta factor, and apply a
    // significance shaping function to it.
    return clampF(angleChange*2.0f, gainChange*2.0f, 1.0f);
}

// Calculates static HRIR coefficients and delays for the given polar
// elevation and azimuth in radians.  Linear interpolation is used to
// increase the apparent resolution of the HRIR dataset.  The coefficients
// are also normalized and attenuated by the specified gain.
void GetLerpedHrtfCoeffs(ALfloat elevation, ALfloat azimuth, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays)
{
    ALuint evidx[2], azidx[2];
    ALfloat mu[3];
    ALuint lidx[4], ridx[4];
    ALuint i;

    // Claculate elevation indices and interpolation factor.
    CalcEvIndices(elevation, evidx, &mu[2]);

    // Calculate azimuth indices and interpolation factor for the first
    // elevation.
    CalcAzIndices(evidx[0], azimuth, azidx, &mu[0]);

    // Calculate the first set of linear HRIR indices for left and right
    // channels.
    lidx[0] = evOffset[evidx[0]] + azidx[0];
    lidx[1] = evOffset[evidx[0]] + azidx[1];
    ridx[0] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[0]) % azCount[evidx[0]]);
    ridx[1] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[1]) % azCount[evidx[0]]);

    // Calculate azimuth indices and interpolation factor for the second
    // elevation.
    CalcAzIndices(evidx[1], azimuth, azidx, &mu[1]);

    // Calculate the second set of linear HRIR indices for left and right
    // channels.
    lidx[2] = evOffset[evidx[1]] + azidx[0];
    lidx[3] = evOffset[evidx[1]] + azidx[1];
    ridx[2] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[0]) % azCount[evidx[1]]);
    ridx[3] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[1]) % azCount[evidx[1]]);

    // Calculate the normalized and attenuated HRIR coefficients using linear
    // interpolation when there is enough gain to warrant it.  Zero the
    // coefficients if gain is too low.
    if(gain > 0.0001f)
    {
        ALdouble scale = gain * (1.0/32767.0);
        for(i = 0;i < HRIR_LENGTH;i++)
        {
            coeffs[i][0] = lerp(lerp(Hrtf.coeffs[lidx[0]][i], Hrtf.coeffs[lidx[1]][i], mu[0]),
                                lerp(Hrtf.coeffs[lidx[2]][i], Hrtf.coeffs[lidx[3]][i], mu[1]),
                                mu[2]) * scale;
            coeffs[i][1] = lerp(lerp(Hrtf.coeffs[ridx[0]][i], Hrtf.coeffs[ridx[1]][i], mu[0]),
                                lerp(Hrtf.coeffs[ridx[2]][i], Hrtf.coeffs[ridx[3]][i], mu[1]),
                                mu[2]) * scale;
        }
    }
    else
    {
        for(i = 0;i < HRIR_LENGTH;i++)
        {
            coeffs[i][0] = 0.0f;
            coeffs[i][1] = 0.0f;
        }
    }

    // Calculate the HRIR delays using linear interpolation.
    delays[0] = (ALuint)(lerp(lerp(Hrtf.delays[lidx[0]], Hrtf.delays[lidx[1]], mu[0]),
                              lerp(Hrtf.delays[lidx[2]], Hrtf.delays[lidx[3]], mu[1]),
                              mu[2]) * 65536.0f);
    delays[1] = (ALuint)(lerp(lerp(Hrtf.delays[ridx[0]], Hrtf.delays[ridx[1]], mu[0]),
                              lerp(Hrtf.delays[ridx[2]], Hrtf.delays[ridx[3]], mu[1]),
                              mu[2]) * 65536.0f);
}

// Calculates the moving HRIR target coefficients, target delays, and
// stepping values for the given polar elevation and azimuth in radians.
// Linear interpolation is used to increase the apparent resolution of the
// HRIR dataset.  The coefficients are also normalized and attenuated by the
// specified gain.  Stepping resolution and count is determined using the
// given delta factor between 0.0 and 1.0.
ALuint GetMovingHrtfCoeffs(ALfloat elevation, ALfloat azimuth, ALfloat gain, ALfloat delta, ALint counter, ALfloat (*coeffs)[2], ALuint *delays, ALfloat (*coeffStep)[2], ALint *delayStep)
{
    ALuint evidx[2], azidx[2];
    ALuint lidx[4], ridx[4];
    ALfloat left, right;
    ALfloat mu[3];
    ALfloat step;
    ALuint i;

    // Claculate elevation indices and interpolation factor.
    CalcEvIndices(elevation, evidx, &mu[2]);

    // Calculate azimuth indices and interpolation factor for the first
    // elevation.
    CalcAzIndices(evidx[0], azimuth, azidx, &mu[0]);

    // Calculate the first set of linear HRIR indices for left and right
    // channels.
    lidx[0] = evOffset[evidx[0]] + azidx[0];
    lidx[1] = evOffset[evidx[0]] + azidx[1];
    ridx[0] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[0]) % azCount[evidx[0]]);
    ridx[1] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[1]) % azCount[evidx[0]]);

    // Calculate azimuth indices and interpolation factor for the second
    // elevation.
    CalcAzIndices(evidx[1], azimuth, azidx, &mu[1]);

    // Calculate the second set of linear HRIR indices for left and right
    // channels.
    lidx[2] = evOffset[evidx[1]] + azidx[0];
    lidx[3] = evOffset[evidx[1]] + azidx[1];
    ridx[2] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[0]) % azCount[evidx[1]]);
    ridx[3] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[1]) % azCount[evidx[1]]);

    // Calculate the stepping parameters.
    delta = maxF(floor(delta*(Hrtf.sampleRate*0.015f) + 0.5), 1.0f);
    step = 1.0f / delta;

    // Calculate the normalized and attenuated target HRIR coefficients using
    // linear interpolation when there is enough gain to warrant it.  Zero
    // the target coefficients if gain is too low.  Then calculate the
    // coefficient stepping values using the target and previous running
    // coefficients.
    if(gain > 0.0001f)
    {
        ALdouble scale = gain * (1.0/32767.0);
        for(i = 0;i < HRIR_LENGTH;i++)
        {
            left = coeffs[i][0] - (coeffStep[i][0] * counter);
            right = coeffs[i][1] - (coeffStep[i][1] * counter);

            coeffs[i][0] = lerp(lerp(Hrtf.coeffs[lidx[0]][i], Hrtf.coeffs[lidx[1]][i], mu[0]),
                                lerp(Hrtf.coeffs[lidx[2]][i], Hrtf.coeffs[lidx[3]][i], mu[1]),
                                mu[2]) * scale;
            coeffs[i][1] = lerp(lerp(Hrtf.coeffs[ridx[0]][i], Hrtf.coeffs[ridx[1]][i], mu[0]),
                                lerp(Hrtf.coeffs[ridx[2]][i], Hrtf.coeffs[ridx[3]][i], mu[1]),
                                mu[2]) * scale;

            coeffStep[i][0] = step * (coeffs[i][0] - left);
            coeffStep[i][1] = step * (coeffs[i][1] - right);
        }
    }
    else
    {
        for(i = 0;i < HRIR_LENGTH;i++)
        {
            left = coeffs[i][0] - (coeffStep[i][0] * counter);
            right = coeffs[i][1] - (coeffStep[i][1] * counter);

            coeffs[i][0] = 0.0f;
            coeffs[i][1] = 0.0f;

            coeffStep[i][0] = step * -left;
            coeffStep[i][1] = step * -right;
        }
    }

    // Calculate the HRIR delays using linear interpolation.  Then calculate
    // the delay stepping values using the target and previous running
    // delays.
    left = delays[0] - (delayStep[0] * counter);
    right = delays[1] - (delayStep[1] * counter);

    delays[0] = (ALuint)(lerp(lerp(Hrtf.delays[lidx[0]], Hrtf.delays[lidx[1]], mu[0]),
                              lerp(Hrtf.delays[lidx[2]], Hrtf.delays[lidx[3]], mu[1]),
                              mu[2]) * 65536.0f);
    delays[1] = (ALuint)(lerp(lerp(Hrtf.delays[ridx[0]], Hrtf.delays[ridx[1]], mu[0]),
                              lerp(Hrtf.delays[ridx[2]], Hrtf.delays[ridx[3]], mu[1]),
                              mu[2]) * 65536.0f);

    delayStep[0] = (ALint)(step * (delays[0] - left));
    delayStep[1] = (ALint)(step * (delays[1] - right));

    // The stepping count is the number of samples necessary for the HRIR to
    // complete its transition.  The mixer will only apply stepping for this
    // many samples.
    return (ALuint)delta;
}

ALCboolean IsHrtfCompatible(ALCdevice *device)
{
    if(device->FmtChans == DevFmtStereo && device->Frequency == Hrtf.sampleRate)
        return ALC_TRUE;
    ERR("Incompatible HRTF format: %s %uhz (%s %uhz needed)\n",
        DevFmtChannelsString(device->FmtChans), device->Frequency,
        DevFmtChannelsString(DevFmtStereo), Hrtf.sampleRate);
    return ALC_FALSE;
}

void InitHrtf(void)
{
    const char *fname;
    FILE *f = NULL;

    fname = GetConfigValue(NULL, "hrtf_tables", "");
    if(fname[0] != '\0')
    {
        f = fopen(fname, "rb");
        if(f == NULL)
            ERR("Could not open %s\n", fname);
    }
    if(f != NULL)
    {
        const ALubyte maxDelay = SRC_HISTORY_LENGTH-1;
        ALboolean failed = AL_FALSE;
        struct Hrtf newdata;
        ALchar magic[9];
        ALsizei i, j;

        if(fread(magic, 1, sizeof(magicMarker), f) != sizeof(magicMarker))
        {
            ERR("Failed to read magic marker\n");
            failed = AL_TRUE;
        }
        else if(memcmp(magic, magicMarker, sizeof(magicMarker)) != 0)
        {
            magic[8] = 0;
            ERR("Invalid magic marker: \"%s\"\n", magic);
            failed = AL_TRUE;
        }

        if(!failed)
        {
            ALushort hrirCount, hrirSize;
            ALubyte  evCount;

            newdata.sampleRate  = fgetc(f);
            newdata.sampleRate |= fgetc(f)<<8;
            newdata.sampleRate |= fgetc(f)<<16;
            newdata.sampleRate |= fgetc(f)<<24;

            hrirCount  = fgetc(f);
            hrirCount |= fgetc(f)<<8;

            hrirSize  = fgetc(f);
            hrirSize |= fgetc(f)<<8;

            evCount = fgetc(f);

            if(hrirCount != HRIR_COUNT || hrirSize != HRIR_LENGTH || evCount != ELEV_COUNT)
            {
                ERR("Unsupported value: hrirCount=%d (%d), hrirSize=%d (%d), evCount=%d (%d)\n",
                    hrirCount, HRIR_COUNT, hrirSize, HRIR_LENGTH, evCount, ELEV_COUNT);
                failed = AL_TRUE;
            }
        }

        if(!failed)
        {
            for(i = 0;i < HRIR_COUNT;i++)
            {
                ALushort offset;
                offset  = fgetc(f);
                offset |= fgetc(f)<<8;
                if(offset != evOffset[i])
                {
                    ERR("Unsupported evOffset[%d] value: %d (%d)\n", i, offset, evOffset[i]);
                    failed = AL_TRUE;
                }
            }
        }

        if(!failed)
        {
            for(i = 0;i < HRIR_COUNT;i++)
            {
                for(j = 0;j < HRIR_LENGTH;j++)
                {
                    ALshort coeff;
                    coeff  = fgetc(f);
                    coeff |= fgetc(f)<<8;
                    newdata.coeffs[i][j] = coeff;
                }
            }
            for(i = 0;i < HRIR_COUNT;i++)
            {
                ALubyte delay;
                delay = fgetc(f);
                newdata.delays[i] = delay;
                if(delay > maxDelay)
                {
                    ERR("Invalid delay[%d]: %d (%d)\n", i, delay, maxDelay);
                    failed = AL_TRUE;
                }
            }

            if(feof(f))
            {
                ERR("Premature end of data\n");
                failed = AL_TRUE;
            }
        }

        fclose(f);
        f = NULL;

        if(!failed)
            Hrtf = newdata;
        else
            ERR("Failed to load %s\n", fname);
    }
}