summaryrefslogtreecommitdiffstats
path: root/Alc/hrtf.c
blob: 4cc2de51be38697016798dc66a7715b2007e58ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/**
 * OpenAL cross platform audio library
 * Copyright (C) 2011 by Chris Robinson
 * This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 *  License along with this library; if not, write to the
 *  Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 *  Boston, MA  02111-1307, USA.
 * Or go to http://www.gnu.org/copyleft/lgpl.html
 */

#include "config.h"

#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alSource.h"

#define HRIR_COUNT 828

static const ALuint sampleRate = 44100;
static const ALubyte evCount = 19;
static const ALushort evOffset[19] = { 0, 1, 13, 37, 73, 118, 174, 234, 306, 378, 450, 522, 594, 654, 710, 755, 791, 815, 827 };
static const ALubyte azCount[19] = { 1, 12, 24, 36, 45, 56, 60, 72, 72, 72, 72, 72, 60, 56, 45, 36, 24, 12, 1 };

static struct HRTF {
    ALshort coeffs[HRIR_COUNT][HRIR_LENGTH];
    ALubyte delays[HRIR_COUNT];
} Hrtf = {
#include "hrtf_tables.inc"
};

// Calculate the elevation indices given the polar elevation in radians.
// This will return two indices between 0 and (evCount - 1) and an
// interpolation factor between 0.0 and 1.0.
static void CalcEvIndices(ALfloat ev, ALuint *evidx, ALfloat *evmu)
{
    ev = (M_PI/2.0f + ev) * (evCount-1) / M_PI;
    evidx[0] = (ALuint)ev;
    evidx[1] = __min(evidx[0] + 1, evCount - 1);
    *evmu = ev - evidx[0];
}

// Calculate the azimuth indices given the polar azimuth in radians.  This
// will return two indices between 0 and (azCount [ei] - 1) and an
// interpolation factor between 0.0 and 1.0.
static void CalcAzIndices(ALuint evidx, ALfloat az, ALuint *azidx, ALfloat *azmu)
{
    az = (M_PI*2.0f + az) * azCount[evidx] / (M_PI*2.0f);
    azidx[0] = (ALuint)az % azCount[evidx];
    azidx[1] = (azidx[0] + 1) % azCount[evidx];
    *azmu = az - (ALuint)az;
}

// Calculates static HRIR coefficients and delays for the given polar
// elevation and azimuth in radians.  Linear interpolation is used to
// increase the apparent resolution of the HRIR dataset.  The coefficients
// are also normalized and attenuated by the specified gain.
void GetLerpedHrtfCoeffs(ALfloat elevation, ALfloat azimuth, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays)
{
    ALuint evidx[2], azidx[2];
    ALfloat mu[3];
    ALuint lidx[4], ridx[4];
    ALuint i;

    // Claculate elevation indices and interpolation factor.
    CalcEvIndices(elevation, evidx, &mu[2]);

    // Calculate azimuth indices and interpolation factor for the first
    // elevation.
    CalcAzIndices(evidx[0], azimuth, azidx, &mu[0]);

    // Calculate the first set of linear HRIR indices for left and right
    // channels.
    lidx[0] = evOffset[evidx[0]] + azidx[0];
    lidx[1] = evOffset[evidx[0]] + azidx[1];
    ridx[0] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[0]) % azCount[evidx[0]]);
    ridx[1] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[1]) % azCount[evidx[0]]);

    // Calculate azimuth indices and interpolation factor for the second
    // elevation.
    CalcAzIndices (evidx[1], azimuth, azidx, &mu[1]);

    // Calculate the second set of linear HRIR indices for left and right
    // channels.
    lidx[2] = evOffset[evidx[1]] + azidx[0];
    lidx[3] = evOffset[evidx[1]] + azidx[1];
    ridx[2] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[0]) % azCount[evidx[1]]);
    ridx[3] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[1]) % azCount[evidx[1]]);

    // Calculate the normalized and attenuated HRIR coefficients using linear
    // interpolation when there is enough gain to warrant it.  Zero the
    // coefficients if gain is too low.
    if(gain > 0.0001f)
    {
        ALdouble scale = gain * (1.0/32767.0);
        for(i = 0;i < HRIR_LENGTH;i++)
        {
            coeffs[i][0] = lerp(lerp(Hrtf.coeffs[lidx[0]][i], Hrtf.coeffs[lidx[1]][i], mu[0]),
                                lerp(Hrtf.coeffs[lidx[2]][i], Hrtf.coeffs[lidx[3]][i], mu[1]),
                                mu[2]) * scale;
            coeffs[i][1] = lerp(lerp(Hrtf.coeffs[ridx[0]][i], Hrtf.coeffs[ridx[1]][i], mu[0]),
                                lerp(Hrtf.coeffs[ridx[2]][i], Hrtf.coeffs[ridx[3]][i], mu[1]),
                                mu[2]) * scale;
        }
    }
    else
    {
        for(i = 0;i < HRIR_LENGTH;i++)
        {
            coeffs[i][0] = 0.0f;
            coeffs[i][1] = 0.0f;
        }
    }

    // Calculate the HRIR delays using linear interpolation.
    delays[0] = (ALuint)(lerp(lerp(Hrtf.delays[lidx[0]], Hrtf.delays[lidx[1]], mu[0]),
                              lerp(Hrtf.delays[lidx[2]], Hrtf.delays[lidx[3]], mu[1]),
                              mu[2]) + 0.5f);
    delays[1] = (ALuint)(lerp(lerp(Hrtf.delays[ridx[0]], Hrtf.delays[ridx[1]], mu[0]),
                              lerp(Hrtf.delays[ridx[2]], Hrtf.delays[ridx[3]], mu[1]),
                              mu[2]) + 0.5f);
}

ALCboolean IsHrtfCompatible(ALCdevice *device)
{
    if(device->FmtChans == DevFmtStereo && device->Frequency == sampleRate)
        return ALC_TRUE;
    return ALC_FALSE;
}

void InitHrtf(void)
{
    const char *str;
    FILE *f = NULL;

    str = GetConfigValue(NULL, "hrtf_tables", "");
    if(str[0] != '\0')
    {
        f = fopen(str, "rb");
        if(f == NULL)
            ERROR("Could not open %s\n", str);
    }
    if(f != NULL)
    {
        const ALubyte maxDelay = SRC_HISTORY_LENGTH;
        ALboolean failed = AL_FALSE;
        struct HRTF newdata;
        size_t i, j;

        for(i = 0;i < HRIR_COUNT;i++)
        {
            for(j = 0;j < HRIR_LENGTH;j++)
            {
                ALshort val;
                val  = fgetc(f);
                val |= fgetc(f)<<8;
                newdata.coeffs[i][j] = val;
            }
        }
        for(i = 0;i < HRIR_COUNT;i++)
        {
            ALubyte val;
            val = fgetc(f);
            newdata.delays[i] = val;
            if(val > maxDelay)
            {
                ERROR("Invalid delay at idx %zu: %u (max: %u), in %s\n", i, val, maxDelay, str);
                failed = AL_TRUE;
            }
        }
        if(feof(f))
        {
            ERROR("Premature end of data while reading %s\n", str);
            failed = AL_TRUE;
        }

        fclose(f);
        f = NULL;

        if(!failed)
            Hrtf = newdata;
    }
}