1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
|
/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include "alMain.h"
#include "AL/al.h"
#include "AL/alc.h"
#include "alSource.h"
#include "alBuffer.h"
#include "alListener.h"
#include "alAuxEffectSlot.h"
#include "alu.h"
#include "mixer_defs.h"
static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE,
"MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!");
extern inline void InitiatePositionArrays(ALuint frac, ALuint increment, ALuint *frac_arr, ALuint *pos_arr, ALuint size);
alignas(16) union ResamplerCoeffs ResampleCoeffs;
enum Resampler {
PointResampler,
LinearResampler,
FIR4Resampler,
FIR8Resampler,
BSincResampler,
ResamplerDefault = LinearResampler
};
/* FIR8 requires 3 extra samples before the current position, and 4 after. */
static_assert(MAX_PRE_SAMPLES >= 3, "MAX_PRE_SAMPLES must be at least 3!");
static_assert(MAX_POST_SAMPLES >= 4, "MAX_POST_SAMPLES must be at least 4!");
static HrtfMixerFunc MixHrtfSamples = MixHrtf_C;
static MixerFunc MixSamples = Mix_C;
static ResamplerFunc ResampleSamples = Resample_point32_C;
static inline HrtfMixerFunc SelectHrtfMixer(void)
{
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return MixHrtf_SSE;
#endif
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return MixHrtf_Neon;
#endif
return MixHrtf_C;
}
static inline MixerFunc SelectMixer(void)
{
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return Mix_SSE;
#endif
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Mix_Neon;
#endif
return Mix_C;
}
static inline ResamplerFunc SelectResampler(enum Resampler resampler)
{
switch(resampler)
{
case PointResampler:
return Resample_point32_C;
case LinearResampler:
#ifdef HAVE_SSE4_1
if((CPUCapFlags&CPU_CAP_SSE4_1))
return Resample_lerp32_SSE41;
#endif
#ifdef HAVE_SSE2
if((CPUCapFlags&CPU_CAP_SSE2))
return Resample_lerp32_SSE2;
#endif
return Resample_lerp32_C;
case FIR4Resampler:
#ifdef HAVE_SSE4_1
if((CPUCapFlags&CPU_CAP_SSE4_1))
return Resample_fir4_32_SSE41;
#endif
#ifdef HAVE_SSE3
if((CPUCapFlags&CPU_CAP_SSE3))
return Resample_fir4_32_SSE3;
#endif
return Resample_fir4_32_C;
case FIR8Resampler:
#ifdef HAVE_SSE4_1
if((CPUCapFlags&CPU_CAP_SSE4_1))
return Resample_fir8_32_SSE41;
#endif
#ifdef HAVE_SSE3
if((CPUCapFlags&CPU_CAP_SSE3))
return Resample_fir8_32_SSE3;
#endif
return Resample_fir8_32_C;
case BSincResampler:
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return Resample_bsinc32_SSE;
#endif
return Resample_bsinc32_C;
}
return Resample_point32_C;
}
/* The sinc resampler makes use of a Kaiser window to limit the needed sample
* points to 4 and 8, respectively.
*/
#ifndef M_PI
#define M_PI (3.14159265358979323846)
#endif
static inline double Sinc(double x)
{
if(x == 0.0) return 1.0;
return sin(x*M_PI) / (x*M_PI);
}
/* The zero-order modified Bessel function of the first kind, used for the
* Kaiser window.
*
* I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k)
* = sum_{k=0}^inf ((x / 2)^k / k!)^2
*/
static double BesselI_0(double x)
{
double term, sum, x2, y, last_sum;
int k;
/* Start at k=1 since k=0 is trivial. */
term = 1.0;
sum = 1.0;
x2 = x / 2.0;
k = 1;
/* Let the integration converge until the term of the sum is no longer
* significant.
*/
do {
y = x2 / k;
k ++;
last_sum = sum;
term *= y * y;
sum += term;
} while(sum != last_sum);
return sum;
}
/* Calculate a Kaiser window from the given beta value and a normalized k
* [-1, 1].
*
* w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1
* { 0, elsewhere.
*
* Where k can be calculated as:
*
* k = i / l, where -l <= i <= l.
*
* or:
*
* k = 2 i / M - 1, where 0 <= i <= M.
*/
static inline double Kaiser(double b, double k)
{
if(k <= -1.0 || k >= 1.0) return 0.0;
return BesselI_0(b * sqrt(1.0 - (k*k))) / BesselI_0(b);
}
static inline double CalcKaiserBeta(double rejection)
{
if(rejection > 50.0)
return 0.1102 * (rejection - 8.7);
if(rejection >= 21.0)
return (0.5842 * pow(rejection - 21.0, 0.4)) +
(0.07886 * (rejection - 21.0));
return 0.0;
}
static float SincKaiser(double r, double x)
{
/* Limit rippling to -60dB. */
return (float)(Kaiser(CalcKaiserBeta(60.0), x / r) * Sinc(x));
}
void aluInitMixer(void)
{
enum Resampler resampler = ResamplerDefault;
const char *str;
ALuint i;
if(ConfigValueStr(NULL, NULL, "resampler", &str))
{
if(strcasecmp(str, "point") == 0 || strcasecmp(str, "none") == 0)
resampler = PointResampler;
else if(strcasecmp(str, "linear") == 0)
resampler = LinearResampler;
else if(strcasecmp(str, "sinc4") == 0)
resampler = FIR4Resampler;
else if(strcasecmp(str, "sinc8") == 0)
resampler = FIR8Resampler;
else if(strcasecmp(str, "bsinc") == 0)
resampler = BSincResampler;
else if(strcasecmp(str, "cubic") == 0)
{
WARN("Resampler option \"cubic\" is deprecated, using sinc4\n");
resampler = FIR4Resampler;
}
else
{
char *end;
long n = strtol(str, &end, 0);
if(*end == '\0' && (n == PointResampler || n == LinearResampler || n == FIR4Resampler))
resampler = n;
else
WARN("Invalid resampler: %s\n", str);
}
}
if(resampler == FIR8Resampler)
for(i = 0;i < FRACTIONONE;i++)
{
ALdouble mu = (ALdouble)i / FRACTIONONE;
ResampleCoeffs.FIR8[i][0] = SincKaiser(4.0, mu - -3.0);
ResampleCoeffs.FIR8[i][1] = SincKaiser(4.0, mu - -2.0);
ResampleCoeffs.FIR8[i][2] = SincKaiser(4.0, mu - -1.0);
ResampleCoeffs.FIR8[i][3] = SincKaiser(4.0, mu - 0.0);
ResampleCoeffs.FIR8[i][4] = SincKaiser(4.0, mu - 1.0);
ResampleCoeffs.FIR8[i][5] = SincKaiser(4.0, mu - 2.0);
ResampleCoeffs.FIR8[i][6] = SincKaiser(4.0, mu - 3.0);
ResampleCoeffs.FIR8[i][7] = SincKaiser(4.0, mu - 4.0);
}
else if(resampler == FIR4Resampler)
for(i = 0;i < FRACTIONONE;i++)
{
ALdouble mu = (ALdouble)i / FRACTIONONE;
ResampleCoeffs.FIR4[i][0] = SincKaiser(2.0, mu - -1.0);
ResampleCoeffs.FIR4[i][1] = SincKaiser(2.0, mu - 0.0);
ResampleCoeffs.FIR4[i][2] = SincKaiser(2.0, mu - 1.0);
ResampleCoeffs.FIR4[i][3] = SincKaiser(2.0, mu - 2.0);
}
MixHrtfSamples = SelectHrtfMixer();
MixSamples = SelectMixer();
ResampleSamples = SelectResampler(resampler);
}
static inline ALfloat Sample_ALbyte(ALbyte val)
{ return val * (1.0f/127.0f); }
static inline ALfloat Sample_ALshort(ALshort val)
{ return val * (1.0f/32767.0f); }
static inline ALfloat Sample_ALfloat(ALfloat val)
{ return val; }
#define DECL_TEMPLATE(T) \
static inline void Load_##T(ALfloat *dst, const T *src, ALuint srcstep, ALuint samples)\
{ \
ALuint i; \
for(i = 0;i < samples;i++) \
dst[i] = Sample_##T(src[i*srcstep]); \
}
DECL_TEMPLATE(ALbyte)
DECL_TEMPLATE(ALshort)
DECL_TEMPLATE(ALfloat)
#undef DECL_TEMPLATE
static void LoadSamples(ALfloat *dst, const ALvoid *src, ALuint srcstep, enum FmtType srctype, ALuint samples)
{
switch(srctype)
{
case FmtByte:
Load_ALbyte(dst, src, srcstep, samples);
break;
case FmtShort:
Load_ALshort(dst, src, srcstep, samples);
break;
case FmtFloat:
Load_ALfloat(dst, src, srcstep, samples);
break;
}
}
static inline void SilenceSamples(ALfloat *dst, ALuint samples)
{
ALuint i;
for(i = 0;i < samples;i++)
dst[i] = 0.0f;
}
static const ALfloat *DoFilters(ALfilterState *lpfilter, ALfilterState *hpfilter,
ALfloat *restrict dst, const ALfloat *restrict src,
ALuint numsamples, enum ActiveFilters type)
{
ALuint i;
switch(type)
{
case AF_None:
ALfilterState_processPassthru(lpfilter, src, numsamples);
ALfilterState_processPassthru(hpfilter, src, numsamples);
break;
case AF_LowPass:
ALfilterState_process(lpfilter, dst, src, numsamples);
ALfilterState_processPassthru(hpfilter, dst, numsamples);
return dst;
case AF_HighPass:
ALfilterState_processPassthru(lpfilter, src, numsamples);
ALfilterState_process(hpfilter, dst, src, numsamples);
return dst;
case AF_BandPass:
for(i = 0;i < numsamples;)
{
ALfloat temp[256];
ALuint todo = minu(256, numsamples-i);
ALfilterState_process(lpfilter, temp, src+i, todo);
ALfilterState_process(hpfilter, dst+i, temp, todo);
i += todo;
}
return dst;
}
return src;
}
ALvoid MixSource(ALvoice *voice, ALsource *Source, ALCdevice *Device, ALuint SamplesToDo)
{
ResamplerFunc Resample;
ALbufferlistitem *BufferListItem;
ALuint DataPosInt, DataPosFrac;
ALboolean Looping;
ALuint increment;
ALenum State;
ALuint OutPos;
ALuint NumChannels;
ALuint SampleSize;
ALint64 DataSize64;
ALuint IrSize;
ALuint chan, j;
/* Get source info */
State = AL_PLAYING; /* Only called while playing. */
BufferListItem = ATOMIC_LOAD(&Source->current_buffer);
DataPosInt = ATOMIC_LOAD(&Source->position, almemory_order_relaxed);
DataPosFrac = ATOMIC_LOAD(&Source->position_fraction, almemory_order_relaxed);
NumChannels = Source->NumChannels;
SampleSize = Source->SampleSize;
Looping = voice->Looping;
increment = voice->Step;
IrSize = (Device->Hrtf ? Device->Hrtf->irSize : 0);
Resample = ((increment == FRACTIONONE && DataPosFrac == 0) ?
Resample_copy32_C : ResampleSamples);
OutPos = 0;
do {
ALuint SrcBufferSize, DstBufferSize;
ALuint Counter;
ALfloat Delta;
if(!voice->Moving)
{
Counter = 0;
Delta = 0.0f;
}
else
{
Counter = SamplesToDo - OutPos;
Delta = 1.0f / (ALfloat)Counter;
}
/* Figure out how many buffer samples will be needed */
DataSize64 = SamplesToDo-OutPos;
DataSize64 *= increment;
DataSize64 += DataPosFrac+FRACTIONMASK;
DataSize64 >>= FRACTIONBITS;
DataSize64 += MAX_POST_SAMPLES+MAX_PRE_SAMPLES;
SrcBufferSize = (ALuint)mini64(DataSize64, BUFFERSIZE);
/* Figure out how many samples we can actually mix from this. */
DataSize64 = SrcBufferSize;
DataSize64 -= MAX_POST_SAMPLES+MAX_PRE_SAMPLES;
DataSize64 <<= FRACTIONBITS;
DataSize64 -= DataPosFrac;
DstBufferSize = (ALuint)((DataSize64+(increment-1)) / increment);
DstBufferSize = minu(DstBufferSize, (SamplesToDo-OutPos));
/* Some mixers like having a multiple of 4, so try to give that unless
* this is the last update. */
if(OutPos+DstBufferSize < SamplesToDo)
DstBufferSize &= ~3;
for(chan = 0;chan < NumChannels;chan++)
{
const ALfloat *ResampledData;
ALfloat *SrcData = Device->SourceData;
ALuint SrcDataSize;
/* Load the previous samples into the source data first. */
memcpy(SrcData, voice->PrevSamples[chan], MAX_PRE_SAMPLES*sizeof(ALfloat));
SrcDataSize = MAX_PRE_SAMPLES;
if(Source->SourceType == AL_STATIC)
{
const ALbuffer *ALBuffer = BufferListItem->buffer;
const ALubyte *Data = ALBuffer->data;
ALuint DataSize;
ALuint pos;
/* Offset buffer data to current channel */
Data += chan*SampleSize;
/* If current pos is beyond the loop range, do not loop */
if(Looping == AL_FALSE || DataPosInt >= (ALuint)ALBuffer->LoopEnd)
{
Looping = AL_FALSE;
/* Load what's left to play from the source buffer, and
* clear the rest of the temp buffer */
pos = DataPosInt;
DataSize = minu(SrcBufferSize - SrcDataSize, ALBuffer->SampleLen - pos);
LoadSamples(&SrcData[SrcDataSize], &Data[pos * NumChannels*SampleSize],
NumChannels, ALBuffer->FmtType, DataSize);
SrcDataSize += DataSize;
SilenceSamples(&SrcData[SrcDataSize], SrcBufferSize - SrcDataSize);
SrcDataSize += SrcBufferSize - SrcDataSize;
}
else
{
ALuint LoopStart = ALBuffer->LoopStart;
ALuint LoopEnd = ALBuffer->LoopEnd;
/* Load what's left of this loop iteration, then load
* repeats of the loop section */
pos = DataPosInt;
DataSize = LoopEnd - pos;
DataSize = minu(SrcBufferSize - SrcDataSize, DataSize);
LoadSamples(&SrcData[SrcDataSize], &Data[pos * NumChannels*SampleSize],
NumChannels, ALBuffer->FmtType, DataSize);
SrcDataSize += DataSize;
DataSize = LoopEnd-LoopStart;
while(SrcBufferSize > SrcDataSize)
{
DataSize = minu(SrcBufferSize - SrcDataSize, DataSize);
LoadSamples(&SrcData[SrcDataSize], &Data[LoopStart * NumChannels*SampleSize],
NumChannels, ALBuffer->FmtType, DataSize);
SrcDataSize += DataSize;
}
}
}
else
{
/* Crawl the buffer queue to fill in the temp buffer */
ALbufferlistitem *tmpiter = BufferListItem;
ALuint pos = DataPosInt;
while(tmpiter && SrcBufferSize > SrcDataSize)
{
const ALbuffer *ALBuffer;
if((ALBuffer=tmpiter->buffer) != NULL)
{
const ALubyte *Data = ALBuffer->data;
ALuint DataSize = ALBuffer->SampleLen;
/* Skip the data already played */
if(DataSize <= pos)
pos -= DataSize;
else
{
Data += (pos*NumChannels + chan)*SampleSize;
DataSize -= pos;
pos -= pos;
DataSize = minu(SrcBufferSize - SrcDataSize, DataSize);
LoadSamples(&SrcData[SrcDataSize], Data, NumChannels,
ALBuffer->FmtType, DataSize);
SrcDataSize += DataSize;
}
}
tmpiter = tmpiter->next;
if(!tmpiter && Looping)
tmpiter = ATOMIC_LOAD(&Source->queue);
else if(!tmpiter)
{
SilenceSamples(&SrcData[SrcDataSize], SrcBufferSize - SrcDataSize);
SrcDataSize += SrcBufferSize - SrcDataSize;
}
}
}
/* Store the last source samples used for next time. */
memcpy(voice->PrevSamples[chan],
&SrcData[(increment*DstBufferSize + DataPosFrac)>>FRACTIONBITS],
MAX_PRE_SAMPLES*sizeof(ALfloat)
);
/* Now resample, then filter and mix to the appropriate outputs. */
ResampledData = Resample(&voice->SincState,
&SrcData[MAX_PRE_SAMPLES], DataPosFrac, increment,
Device->ResampledData, DstBufferSize
);
{
DirectParams *parms = &voice->Chan[chan].Direct;
const ALfloat *samples;
samples = DoFilters(
&parms->LowPass, &parms->HighPass, Device->FilteredData,
ResampledData, DstBufferSize, parms->FilterType
);
if(!voice->IsHrtf)
{
ALfloat *restrict currents = parms->Gains.Current;
const ALfloat *targets = parms->Gains.Target;
MixGains gains[MAX_OUTPUT_CHANNELS];
if(!Counter)
{
for(j = 0;j < voice->DirectOut.Channels;j++)
{
gains[j].Target = targets[j];
gains[j].Current = gains[j].Target;
gains[j].Step = 0.0f;
}
}
else
{
for(j = 0;j < voice->DirectOut.Channels;j++)
{
ALfloat diff;
gains[j].Target = targets[j];
gains[j].Current = currents[j];
diff = gains[j].Target - gains[j].Current;
if(fabsf(diff) >= GAIN_SILENCE_THRESHOLD)
gains[j].Step = diff * Delta;
else
{
gains[j].Current = gains[j].Target;
gains[j].Step = 0.0f;
}
}
}
MixSamples(samples, voice->DirectOut.Channels, voice->DirectOut.Buffer,
gains, Counter, OutPos, DstBufferSize);
for(j = 0;j < voice->DirectOut.Channels;j++)
currents[j] = gains[j].Current;
}
else
{
MixHrtfParams hrtfparams;
int lidx, ridx;
if(!Counter)
{
parms->Hrtf.Current = parms->Hrtf.Target;
for(j = 0;j < HRIR_LENGTH;j++)
{
hrtfparams.Steps.Coeffs[j][0] = 0.0f;
hrtfparams.Steps.Coeffs[j][1] = 0.0f;
}
hrtfparams.Steps.Delay[0] = 0;
hrtfparams.Steps.Delay[1] = 0;
}
else
{
ALfloat coeffdiff;
ALint delaydiff;
for(j = 0;j < IrSize;j++)
{
coeffdiff = parms->Hrtf.Target.Coeffs[j][0] - parms->Hrtf.Current.Coeffs[j][0];
hrtfparams.Steps.Coeffs[j][0] = coeffdiff * Delta;
coeffdiff = parms->Hrtf.Target.Coeffs[j][1] - parms->Hrtf.Current.Coeffs[j][1];
hrtfparams.Steps.Coeffs[j][1] = coeffdiff * Delta;
}
delaydiff = (ALint)(parms->Hrtf.Target.Delay[0] - parms->Hrtf.Current.Delay[0]);
hrtfparams.Steps.Delay[0] = fastf2i((ALfloat)delaydiff * Delta);
delaydiff = (ALint)(parms->Hrtf.Target.Delay[1] - parms->Hrtf.Current.Delay[1]);
hrtfparams.Steps.Delay[1] = fastf2i((ALfloat)delaydiff * Delta);
}
hrtfparams.Target = &parms->Hrtf.Target;
hrtfparams.Current = &parms->Hrtf.Current;
lidx = GetChannelIdxByName(Device->RealOut, FrontLeft);
ridx = GetChannelIdxByName(Device->RealOut, FrontRight);
assert(lidx != -1 && ridx != -1);
MixHrtfSamples(voice->DirectOut.Buffer, lidx, ridx, samples, Counter,
voice->Offset, OutPos, IrSize, &hrtfparams,
&parms->Hrtf.State, DstBufferSize);
}
}
for(j = 0;j < Device->NumAuxSends;j++)
{
SendParams *parms = &voice->Chan[chan].Send[j];
ALfloat *restrict currents = parms->Gains.Current;
const ALfloat *targets = parms->Gains.Target;
MixGains gains[MAX_OUTPUT_CHANNELS];
const ALfloat *samples;
if(!voice->SendOut[j].Buffer)
continue;
samples = DoFilters(
&parms->LowPass, &parms->HighPass, Device->FilteredData,
ResampledData, DstBufferSize, parms->FilterType
);
if(!Counter)
{
for(j = 0;j < voice->SendOut[j].Channels;j++)
{
gains[j].Target = targets[j];
gains[j].Current = gains[j].Target;
gains[j].Step = 0.0f;
}
}
else
{
for(j = 0;j < voice->SendOut[j].Channels;j++)
{
ALfloat diff;
gains[j].Target = targets[j];
gains[j].Current = currents[j];
diff = gains[j].Target - gains[j].Current;
if(fabsf(diff) >= GAIN_SILENCE_THRESHOLD)
gains[j].Step = diff * Delta;
else
{
gains[j].Current = gains[j].Target;
gains[j].Step = 0.0f;
}
}
}
MixSamples(samples, voice->SendOut[j].Channels, voice->SendOut[j].Buffer,
gains, Counter, OutPos, DstBufferSize);
for(j = 0;j < voice->SendOut[j].Channels;j++)
currents[j] = gains[j].Current;
}
}
/* Update positions */
DataPosFrac += increment*DstBufferSize;
DataPosInt += DataPosFrac>>FRACTIONBITS;
DataPosFrac &= FRACTIONMASK;
OutPos += DstBufferSize;
voice->Offset += DstBufferSize;
/* Handle looping sources */
while(1)
{
const ALbuffer *ALBuffer;
ALuint DataSize = 0;
ALuint LoopStart = 0;
ALuint LoopEnd = 0;
if((ALBuffer=BufferListItem->buffer) != NULL)
{
DataSize = ALBuffer->SampleLen;
LoopStart = ALBuffer->LoopStart;
LoopEnd = ALBuffer->LoopEnd;
if(LoopEnd > DataPosInt)
break;
}
if(Looping && Source->SourceType == AL_STATIC)
{
assert(LoopEnd > LoopStart);
DataPosInt = ((DataPosInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart;
break;
}
if(DataSize > DataPosInt)
break;
if(!(BufferListItem=BufferListItem->next))
{
if(Looping)
BufferListItem = ATOMIC_LOAD(&Source->queue);
else
{
State = AL_STOPPED;
BufferListItem = NULL;
DataPosInt = 0;
DataPosFrac = 0;
break;
}
}
DataPosInt -= DataSize;
}
} while(State == AL_PLAYING && OutPos < SamplesToDo);
voice->Moving = AL_TRUE;
/* Update source info */
Source->state = State;
ATOMIC_STORE(&Source->current_buffer, BufferListItem, almemory_order_relaxed);
ATOMIC_STORE(&Source->position, DataPosInt, almemory_order_relaxed);
ATOMIC_STORE(&Source->position_fraction, DataPosFrac);
}
|