aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/mixer/mixer_c.cpp
blob: 38bb7b64909229959c56c9f3d2a143d9b872c32d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#include "config.h"

#include <cassert>

#include <limits>

#include "alMain.h"
#include "alu.h"
#include "alSource.h"
#include "alAuxEffectSlot.h"
#include "defs.h"


static inline ALfloat do_point(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei) noexcept
{ return vals[0]; }
static inline ALfloat do_lerp(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei frac) noexcept
{ return lerp(vals[0], vals[1], frac * (1.0f/FRACTIONONE)); }
static inline ALfloat do_cubic(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei frac) noexcept
{ return cubic(vals[0], vals[1], vals[2], vals[3], frac * (1.0f/FRACTIONONE)); }
static inline ALfloat do_bsinc(const InterpState &istate, const ALfloat *RESTRICT vals, const ALsizei frac) noexcept
{
    ASSUME(istate.bsinc.m > 0);

    // Calculate the phase index and factor.
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
    const ALsizei pi{frac >> FRAC_PHASE_BITDIFF};
    const ALfloat pf{(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF))};
#undef FRAC_PHASE_BITDIFF

    const ALfloat *fil{istate.bsinc.filter + istate.bsinc.m*pi*4};
    const ALfloat *scd{fil + istate.bsinc.m};
    const ALfloat *phd{scd + istate.bsinc.m};
    const ALfloat *spd{phd + istate.bsinc.m};

    // Apply the scale and phase interpolated filter.
    ALfloat r{0.0f};
    for(ALsizei j_f{0};j_f < istate.bsinc.m;j_f++)
        r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f];
    return r;
}

const ALfloat *Resample_copy_C(const InterpState* UNUSED(state),
  const ALfloat *RESTRICT src, ALsizei UNUSED(frac), ALint UNUSED(increment),
  ALfloat *RESTRICT dst, ALsizei numsamples)
{
    ASSUME(numsamples > 0);
#if defined(HAVE_SSE) || defined(HAVE_NEON)
    /* Avoid copying the source data if it's aligned like the destination. */
    if((reinterpret_cast<intptr_t>(src)&15) == (reinterpret_cast<intptr_t>(dst)&15))
        return src;
#endif
    std::copy_n(src, numsamples, dst);
    return dst;
}

template<ALfloat Sampler(const InterpState&, const ALfloat*RESTRICT, const ALsizei) noexcept>
static const ALfloat *DoResample(const InterpState *state, const ALfloat *RESTRICT src,
                                 ALsizei frac, ALint increment, ALfloat *RESTRICT dst,
                                 ALsizei numsamples)
{
    ASSUME(numsamples > 0);
    ASSUME(increment > 0);
    ASSUME(frac >= 0);

    const InterpState istate{*state};
    std::generate_n<ALfloat*RESTRICT>(dst, numsamples,
        [&src,&frac,istate,increment]() noexcept -> ALfloat
        {
            ALfloat ret{Sampler(istate, src, frac)};

            frac += increment;
            src  += frac>>FRACTIONBITS;
            frac &= FRACTIONMASK;

            return ret;
        }
    );
    return dst;
}

const ALfloat *Resample_point_C(const InterpState *state, const ALfloat *RESTRICT src,
                                ALsizei frac, ALint increment, ALfloat *RESTRICT dst,
                                ALsizei numsamples)
{ return DoResample<do_point>(state, src, frac, increment, dst, numsamples); }

const ALfloat *Resample_lerp_C(const InterpState *state, const ALfloat *RESTRICT src,
                               ALsizei frac, ALint increment, ALfloat *RESTRICT dst,
                               ALsizei numsamples)
{ return DoResample<do_lerp>(state, src, frac, increment, dst, numsamples); }

const ALfloat *Resample_cubic_C(const InterpState *state, const ALfloat *RESTRICT src,
                                ALsizei frac, ALint increment, ALfloat *RESTRICT dst,
                                ALsizei numsamples)
{ return DoResample<do_cubic>(state, src-1, frac, increment, dst, numsamples); }

const ALfloat *Resample_bsinc_C(const InterpState *state, const ALfloat *RESTRICT src,
                                ALsizei frac, ALint increment, ALfloat *RESTRICT dst,
                                ALsizei numsamples)
{ return DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst, numsamples); }


static inline void ApplyCoeffs(ALsizei Offset, ALfloat (&Values)[HRIR_LENGTH][2],
                               const ALsizei IrSize, const ALfloat (&Coeffs)[HRIR_LENGTH][2],
                               const ALfloat left, const ALfloat right)
{
    ASSUME(Offset >= 0 && Offset < HRIR_LENGTH);
    ASSUME(IrSize >= 2);
    ASSUME(&Values != &Coeffs);

    ALsizei count{mini(IrSize, HRIR_LENGTH - Offset)};
    ASSUME(count > 0);
    for(ALsizei c{0};;)
    {
        for(;c < count;++c)
        {
            Values[Offset][0] += Coeffs[c][0] * left;
            Values[Offset][1] += Coeffs[c][1] * right;
            ++Offset;
        }
        if(c >= IrSize)
            break;
        Offset = 0;
        count = IrSize;
    }
}

#define MixHrtf MixHrtf_C
#define MixHrtfBlend MixHrtfBlend_C
#define MixDirectHrtf MixDirectHrtf_C
#include "hrtf_inc.cpp"


void Mix_C(const ALfloat *data, ALsizei OutChans, ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE],
           ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos,
           ALsizei BufferSize)
{
    ASSUME(OutChans > 0);
    ASSUME(BufferSize > 0);

    const ALfloat delta{(Counter > 0) ? 1.0f / static_cast<ALfloat>(Counter) : 0.0f};
    for(ALsizei c{0};c < OutChans;c++)
    {
        ALsizei pos{0};
        ALfloat gain{CurrentGains[c]};

        const ALfloat diff{TargetGains[c] - gain};
        if(std::fabs(diff) > std::numeric_limits<float>::epsilon())
        {
            ALsizei minsize{mini(BufferSize, Counter)};
            const ALfloat step{diff * delta};
            ALfloat step_count{0.0f};
            for(;pos < minsize;pos++)
            {
                OutBuffer[c][OutPos+pos] += data[pos] * (gain + step*step_count);
                step_count += 1.0f;
            }
            if(pos == Counter)
                gain = TargetGains[c];
            else
                gain += step*step_count;
            CurrentGains[c] = gain;
        }

        if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
            continue;
        for(;pos < BufferSize;pos++)
            OutBuffer[c][OutPos+pos] += data[pos]*gain;
    }
}

/* Basically the inverse of the above. Rather than one input going to multiple
 * outputs (each with its own gain), it's multiple inputs (each with its own
 * gain) going to one output. This applies one row (vs one column) of a matrix
 * transform. And as the matrices are more or less static once set up, no
 * stepping is necessary.
 */
void MixRow_C(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*RESTRICT data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize)
{
    ASSUME(InChans > 0);
    ASSUME(BufferSize > 0);

    for(ALsizei c{0};c < InChans;c++)
    {
        const ALfloat gain{Gains[c]};
        if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
            continue;

        for(ALsizei i{0};i < BufferSize;i++)
            OutBuffer[i] += data[c][InPos+i] * gain;
    }
}