aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/mixer/mixer_neon.c
blob: 7f8dd1d41631ca3579211dbc9be1de8f5e20960d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#include "config.h"

#include <arm_neon.h>

#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alu.h"
#include "hrtf.h"
#include "defs.h"


const ALfloat *Resample_lerp_Neon(const InterpState* UNUSED(state),
  const ALfloat *restrict src, ALsizei frac, ALint increment,
  ALfloat *restrict dst, ALsizei numsamples)
{
    const int32x4_t increment4 = vdupq_n_s32(increment*4);
    const float32x4_t fracOne4 = vdupq_n_f32(1.0f/FRACTIONONE);
    const int32x4_t fracMask4 = vdupq_n_s32(FRACTIONMASK);
    alignas(16) ALint pos_[4];
    alignas(16) ALsizei frac_[4];
    int32x4_t pos4;
    int32x4_t frac4;
    ALsizei i;

    InitiatePositionArrays(frac, increment, frac_, pos_, 4);

    frac4 = vld1q_s32(frac_);
    pos4 = vld1q_s32(pos_);

    for(i = 0;numsamples-i > 3;i += 4)
    {
        const float32x4_t val1 = (float32x4_t){src[pos_[0]], src[pos_[1]], src[pos_[2]], src[pos_[3]]};
        const float32x4_t val2 = (float32x4_t){src[pos_[0]+1], src[pos_[1]+1], src[pos_[2]+1], src[pos_[3]+1]};

        /* val1 + (val2-val1)*mu */
        const float32x4_t r0 = vsubq_f32(val2, val1);
        const float32x4_t mu = vmulq_f32(vcvtq_f32_s32(frac4), fracOne4);
        const float32x4_t out = vmlaq_f32(val1, mu, r0);

        vst1q_f32(&dst[i], out);

        frac4 = vaddq_s32(frac4, increment4);
        pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, FRACTIONBITS));
        frac4 = vandq_s32(frac4, fracMask4);

        vst1q_s32(pos_, pos4);
    }

    if(i < numsamples)
    {
        /* NOTE: These four elements represent the position *after* the last
         * four samples, so the lowest element is the next position to
         * resample.
         */
        ALint pos = pos_[0];
        frac = vgetq_lane_s32(frac4, 0);
        do {
            dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE));

            frac += increment;
            pos  += frac>>FRACTIONBITS;
            frac &= FRACTIONMASK;
        } while(++i < numsamples);
    }
    return dst;
}

const ALfloat *Resample_bsinc_Neon(const InterpState *state,
  const ALfloat *restrict src, ALsizei frac, ALint increment,
  ALfloat *restrict dst, ALsizei dstlen)
{
    const ALfloat *const filter = state->bsinc.filter;
    const float32x4_t sf4 = vdupq_n_f32(state->bsinc.sf);
    const ALsizei m = state->bsinc.m;
    const float32x4_t *fil, *scd, *phd, *spd;
    ALsizei pi, i, j, offset;
    float32x4_t r4;
    ALfloat pf;

    src += state->bsinc.l;
    for(i = 0;i < dstlen;i++)
    {
        // Calculate the phase index and factor.
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
        pi = frac >> FRAC_PHASE_BITDIFF;
        pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
#undef FRAC_PHASE_BITDIFF

        offset = m*pi*4;
        fil = ASSUME_ALIGNED(filter + offset, 16); offset += m;
        scd = ASSUME_ALIGNED(filter + offset, 16); offset += m;
        phd = ASSUME_ALIGNED(filter + offset, 16); offset += m;
        spd = ASSUME_ALIGNED(filter + offset, 16);

        // Apply the scale and phase interpolated filter.
        r4 = vdupq_n_f32(0.0f);
        {
            const float32x4_t pf4 = vdupq_n_f32(pf);
            for(j = 0;j < m;j+=4,fil++,scd++,phd++,spd++)
            {
                /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
                const float32x4_t f4 = vmlaq_f32(
                    vmlaq_f32(*fil, sf4, *scd),
                    pf4, vmlaq_f32(*phd, sf4, *spd)
                );
                /* r += f*src */
                r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j]));
            }
        }
        r4 = vaddq_f32(r4, vcombine_f32(vrev64_f32(vget_high_f32(r4)),
                                        vrev64_f32(vget_low_f32(r4))));
        dst[i] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);

        frac += increment;
        src  += frac>>FRACTIONBITS;
        frac &= FRACTIONMASK;
    }
    return dst;
}


static inline void ApplyCoeffs(ALsizei Offset, ALfloat (*restrict Values)[2],
                               const ALsizei IrSize,
                               const ALfloat (*restrict Coeffs)[2],
                               ALfloat left, ALfloat right)
{
    ALsizei c;
    float32x4_t leftright4;
    {
        float32x2_t leftright2 = vdup_n_f32(0.0);
        leftright2 = vset_lane_f32(left, leftright2, 0);
        leftright2 = vset_lane_f32(right, leftright2, 1);
        leftright4 = vcombine_f32(leftright2, leftright2);
    }
    Values = ASSUME_ALIGNED(Values, 16);
    Coeffs = ASSUME_ALIGNED(Coeffs, 16);
    for(c = 0;c < IrSize;c += 2)
    {
        const ALsizei o0 = (Offset+c)&HRIR_MASK;
        const ALsizei o1 = (o0+1)&HRIR_MASK;
        float32x4_t vals = vcombine_f32(vld1_f32((float32_t*)&Values[o0][0]),
                                        vld1_f32((float32_t*)&Values[o1][0]));
        float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]);

        vals = vmlaq_f32(vals, coefs, leftright4);

        vst1_f32((float32_t*)&Values[o0][0], vget_low_f32(vals));
        vst1_f32((float32_t*)&Values[o1][0], vget_high_f32(vals));
    }
}

#define MixHrtf MixHrtf_Neon
#define MixHrtfBlend MixHrtfBlend_Neon
#define MixDirectHrtf MixDirectHrtf_Neon
#include "hrtf_inc.c"
#undef MixHrtf


void Mix_Neon(const ALfloat *data, ALsizei OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE],
              ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos,
              ALsizei BufferSize)
{
    ALfloat gain, delta, step;
    float32x4_t gain4;
    ALsizei c;

    data = ASSUME_ALIGNED(data, 16);
    OutBuffer = ASSUME_ALIGNED(OutBuffer, 16);

    delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f;

    for(c = 0;c < OutChans;c++)
    {
        ALsizei pos = 0;
        gain = CurrentGains[c];
        step = (TargetGains[c] - gain) * delta;
        if(fabsf(step) > FLT_EPSILON)
        {
            ALsizei minsize = mini(BufferSize, Counter);
            /* Mix with applying gain steps in aligned multiples of 4. */
            if(minsize-pos > 3)
            {
                float32x4_t step4;
                gain4 = vsetq_lane_f32(gain, gain4, 0);
                gain4 = vsetq_lane_f32(gain + step, gain4, 1);
                gain4 = vsetq_lane_f32(gain + step + step, gain4, 2);
                gain4 = vsetq_lane_f32(gain + step + step + step, gain4, 3);
                step4 = vdupq_n_f32(step + step + step + step);
                do {
                    const float32x4_t val4 = vld1q_f32(&data[pos]);
                    float32x4_t dry4 = vld1q_f32(&OutBuffer[c][OutPos+pos]);
                    dry4 = vmlaq_f32(dry4, val4, gain4);
                    gain4 = vaddq_f32(gain4, step4);
                    vst1q_f32(&OutBuffer[c][OutPos+pos], dry4);
                    pos += 4;
                } while(minsize-pos > 3);
                /* NOTE: gain4 now represents the next four gains after the
                 * last four mixed samples, so the lowest element represents
                 * the next gain to apply.
                 */
                gain = vgetq_lane_f32(gain4, 0);
            }
            /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
            for(;pos < minsize;pos++)
            {
                OutBuffer[c][OutPos+pos] += data[pos]*gain;
                gain += step;
            }
            if(pos == Counter)
                gain = TargetGains[c];
            CurrentGains[c] = gain;

            /* Mix until pos is aligned with 4 or the mix is done. */
            minsize = mini(BufferSize, (pos+3)&~3);
            for(;pos < minsize;pos++)
                OutBuffer[c][OutPos+pos] += data[pos]*gain;
        }

        if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
            continue;
        gain4 = vdupq_n_f32(gain);
        for(;BufferSize-pos > 3;pos += 4)
        {
            const float32x4_t val4 = vld1q_f32(&data[pos]);
            float32x4_t dry4 = vld1q_f32(&OutBuffer[c][OutPos+pos]);
            dry4 = vmlaq_f32(dry4, val4, gain4);
            vst1q_f32(&OutBuffer[c][OutPos+pos], dry4);
        }
        for(;pos < BufferSize;pos++)
            OutBuffer[c][OutPos+pos] += data[pos]*gain;
    }
}

void MixRow_Neon(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*restrict data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize)
{
    float32x4_t gain4;
    ALsizei c;

    data = ASSUME_ALIGNED(data, 16);
    OutBuffer = ASSUME_ALIGNED(OutBuffer, 16);

    for(c = 0;c < InChans;c++)
    {
        ALsizei pos = 0;
        ALfloat gain = Gains[c];
        if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
            continue;

        gain4 = vdupq_n_f32(gain);
        for(;BufferSize-pos > 3;pos += 4)
        {
            const float32x4_t val4 = vld1q_f32(&data[c][InPos+pos]);
            float32x4_t dry4 = vld1q_f32(&OutBuffer[pos]);
            dry4 = vmlaq_f32(dry4, val4, gain4);
            vst1q_f32(&OutBuffer[pos], dry4);
        }
        for(;pos < BufferSize;pos++)
            OutBuffer[pos] += data[c][InPos+pos]*gain;
    }
}