1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
#include "config.h"
#include <xmmintrin.h>
#include <limits>
#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alu.h"
#include "alSource.h"
#include "alAuxEffectSlot.h"
#include "defs.h"
#include "hrtfbase.h"
template<>
const ALfloat *Resample_<BSincTag,SSETag>(const InterpState *state, const ALfloat *RESTRICT src,
ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen)
{
const ALfloat *const filter{state->bsinc.filter};
const __m128 sf4{_mm_set1_ps(state->bsinc.sf)};
const ALsizei m{state->bsinc.m};
ASSUME(m > 0);
ASSUME(dstlen > 0);
ASSUME(increment > 0);
ASSUME(frac >= 0);
src -= state->bsinc.l;
for(ALsizei i{0};i < dstlen;i++)
{
// Calculate the phase index and factor.
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
const ALsizei pi{frac >> FRAC_PHASE_BITDIFF};
const ALfloat pf{(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF))};
#undef FRAC_PHASE_BITDIFF
ALsizei offset{m*pi*4};
const __m128 *fil{reinterpret_cast<const __m128*>(filter + offset)}; offset += m;
const __m128 *scd{reinterpret_cast<const __m128*>(filter + offset)}; offset += m;
const __m128 *phd{reinterpret_cast<const __m128*>(filter + offset)}; offset += m;
const __m128 *spd{reinterpret_cast<const __m128*>(filter + offset)};
// Apply the scale and phase interpolated filter.
__m128 r4{_mm_setzero_ps()};
{
const ALsizei count{m >> 2};
const __m128 pf4{_mm_set1_ps(pf)};
ASSUME(count > 0);
#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
for(ALsizei j{0};j < count;j++)
{
/* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
const __m128 f4 = MLA4(
MLA4(fil[j], sf4, scd[j]),
pf4, MLA4(phd[j], sf4, spd[j])
);
/* r += f*src */
r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j*4]));
}
#undef MLA4
}
r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
dst[i] = _mm_cvtss_f32(r4);
frac += increment;
src += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
return dst;
}
static inline void ApplyCoeffs(ALsizei Offset, ALfloat (&Values)[HRIR_LENGTH][2],
const ALsizei IrSize, const ALfloat (&Coeffs)[HRIR_LENGTH][2],
const ALfloat left, const ALfloat right)
{
const __m128 lrlr{_mm_setr_ps(left, right, left, right)};
ASSUME(IrSize >= 2);
ASSUME(&Values != &Coeffs);
ASSUME(Offset >= 0 && Offset < HRIR_LENGTH);
if((Offset&1))
{
ALsizei count{mini(IrSize-1, HRIR_LENGTH - Offset)};
ASSUME(count >= 1);
__m128 imp0, imp1;
__m128 coeffs{_mm_load_ps(&Coeffs[0][0])};
__m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(&Values[Offset][0]))};
imp0 = _mm_mul_ps(lrlr, coeffs);
vals = _mm_add_ps(imp0, vals);
_mm_storel_pi(reinterpret_cast<__m64*>(&Values[Offset][0]), vals);
++Offset;
for(ALsizei i{1};;)
{
for(;i < count;i += 2)
{
coeffs = _mm_load_ps(&Coeffs[i+1][0]);
vals = _mm_load_ps(&Values[Offset][0]);
imp1 = _mm_mul_ps(lrlr, coeffs);
imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
vals = _mm_add_ps(imp0, vals);
_mm_store_ps(&Values[Offset][0], vals);
imp0 = imp1;
Offset += 2;
}
Offset &= HRIR_MASK;
if(i >= IrSize-1)
break;
count = IrSize-1;
}
vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(&Values[Offset][0]));
imp0 = _mm_movehl_ps(imp0, imp0);
vals = _mm_add_ps(imp0, vals);
_mm_storel_pi(reinterpret_cast<__m64*>(&Values[Offset][0]), vals);
}
else
{
ALsizei count{mini(IrSize, HRIR_LENGTH - Offset)};
ASSUME(count >= 2);
for(ALsizei i{0};;)
{
for(;i < count;i += 2)
{
__m128 coeffs{_mm_load_ps(&Coeffs[i][0])};
__m128 vals{_mm_load_ps(&Values[Offset][0])};
vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs));
_mm_store_ps(&Values[Offset][0], vals);
Offset += 2;
}
if(i >= IrSize)
break;
Offset = 0;
count = IrSize;
}
}
}
template<>
void MixHrtf_<SSETag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut, const ALfloat *data,
ALsizei Offset, const ALsizei OutPos, const ALsizei IrSize, MixHrtfParams *hrtfparams,
HrtfState *hrtfstate, const ALsizei BufferSize)
{
MixHrtfBase<ApplyCoeffs>(LeftOut, RightOut, data, Offset, OutPos, IrSize, hrtfparams,
hrtfstate, BufferSize);
}
template<>
void MixHrtfBlend_<SSETag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut,
const ALfloat *data, ALsizei Offset, const ALsizei OutPos, const ALsizei IrSize,
const HrtfParams *oldparams, MixHrtfParams *newparams, HrtfState *hrtfstate,
const ALsizei BufferSize)
{
MixHrtfBlendBase<ApplyCoeffs>(LeftOut, RightOut, data, Offset, OutPos, IrSize, oldparams,
newparams, hrtfstate, BufferSize);
}
template<>
void MixDirectHrtf_<SSETag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut,
const ALfloat (*data)[BUFFERSIZE], DirectHrtfState *State, const ALsizei NumChans,
const ALsizei BufferSize)
{ MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, data, State, NumChans, BufferSize); }
template<>
void Mix_<SSETag>(const ALfloat *data, const ALsizei OutChans, ALfloat (*OutBuffer)[BUFFERSIZE],
ALfloat *CurrentGains, const ALfloat *TargetGains, const ALsizei Counter, const ALsizei OutPos,
const ALsizei BufferSize)
{
ASSUME(OutChans > 0);
ASSUME(BufferSize > 0);
const ALfloat delta{(Counter > 0) ? 1.0f / static_cast<ALfloat>(Counter) : 0.0f};
for(ALsizei c{0};c < OutChans;c++)
{
ALfloat *RESTRICT dst{al::assume_aligned<16>(&OutBuffer[c][OutPos])};
ALsizei pos{0};
ALfloat gain{CurrentGains[c]};
const ALfloat diff{TargetGains[c] - gain};
if(std::fabs(diff) > std::numeric_limits<float>::epsilon())
{
ALsizei minsize{mini(BufferSize, Counter)};
const ALfloat step{diff * delta};
ALfloat step_count{0.0f};
/* Mix with applying gain steps in aligned multiples of 4. */
if(LIKELY(minsize > 3))
{
const __m128 four4{_mm_set1_ps(4.0f)};
const __m128 step4{_mm_set1_ps(step)};
const __m128 gain4{_mm_set1_ps(gain)};
__m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)};
ALsizei todo{minsize >> 2};
do {
const __m128 val4{_mm_load_ps(&data[pos])};
__m128 dry4{_mm_load_ps(&dst[pos])};
#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
/* dry += val * (gain + step*step_count) */
dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4));
#undef MLA4
_mm_store_ps(&dst[pos], dry4);
step_count4 = _mm_add_ps(step_count4, four4);
pos += 4;
} while(--todo);
/* NOTE: step_count4 now represents the next four counts after
* the last four mixed samples, so the lowest element
* represents the next step count to apply.
*/
step_count = _mm_cvtss_f32(step_count4);
}
/* Mix with applying left over gain steps that aren't aligned multiples of 4. */
for(;pos < minsize;pos++)
{
dst[pos] += data[pos]*(gain + step*step_count);
step_count += 1.0f;
}
if(pos == Counter)
gain = TargetGains[c];
else
gain += step*step_count;
CurrentGains[c] = gain;
/* Mix until pos is aligned with 4 or the mix is done. */
minsize = mini(BufferSize, (pos+3)&~3);
for(;pos < minsize;pos++)
dst[pos] += data[pos]*gain;
}
if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
continue;
if(LIKELY(BufferSize-pos > 3))
{
ALsizei todo{(BufferSize-pos) >> 2};
const __m128 gain4{_mm_set1_ps(gain)};
do {
const __m128 val4{_mm_load_ps(&data[pos])};
__m128 dry4{_mm_load_ps(&dst[pos])};
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
_mm_store_ps(&dst[pos], dry4);
pos += 4;
} while(--todo);
}
for(;pos < BufferSize;pos++)
dst[pos] += data[pos]*gain;
}
}
template<>
void MixRow_<SSETag>(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*data)[BUFFERSIZE],
const ALsizei InChans, const ALsizei InPos, const ALsizei BufferSize)
{
ASSUME(InChans > 0);
ASSUME(BufferSize > 0);
for(ALsizei c{0};c < InChans;c++)
{
const ALfloat *RESTRICT src{al::assume_aligned<16>(&data[c][InPos])};
const ALfloat gain{Gains[c]};
if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
continue;
ALsizei pos{0};
if(LIKELY(BufferSize > 3))
{
ALsizei todo{BufferSize >> 2};
const __m128 gain4 = _mm_set1_ps(gain);
do {
const __m128 val4{_mm_load_ps(&src[pos])};
__m128 dry4{_mm_load_ps(&OutBuffer[pos])};
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
_mm_store_ps(&OutBuffer[pos], dry4);
pos += 4;
} while(--todo);
}
for(;pos < BufferSize;pos++)
OutBuffer[pos] += src[pos]*gain;
}
}
|