1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
/**
* OpenAL cross platform audio library
* Copyright (C) 2014 by Timothy Arceri <t_arceri@yahoo.com.au>.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <xmmintrin.h>
#include <emmintrin.h>
#include "alu.h"
#include "defs.h"
const ALfloat *Resample_lerp_SSE2(const InterpState* UNUSED(state),
const ALfloat *restrict src, ALsizei frac, ALint increment,
ALfloat *restrict dst, ALsizei numsamples)
{
const __m128i increment4 = _mm_set1_epi32(increment*4);
const __m128 fracOne4 = _mm_set1_ps(1.0f/FRACTIONONE);
const __m128i fracMask4 = _mm_set1_epi32(FRACTIONMASK);
ALint pos_[4];
ALsizei frac_[4];
__m128i frac4, pos4;
ALsizei todo, pos, i;
ASSUME(numsamples > 0);
InitiatePositionArrays(frac, increment, frac_, pos_, 4);
frac4 = _mm_setr_epi32(frac_[0], frac_[1], frac_[2], frac_[3]);
pos4 = _mm_setr_epi32(pos_[0], pos_[1], pos_[2], pos_[3]);
todo = numsamples & ~3;
for(i = 0;i < todo;i += 4)
{
const int pos0 = _mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(0, 0, 0, 0)));
const int pos1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(1, 1, 1, 1)));
const int pos2 = _mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(2, 2, 2, 2)));
const int pos3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(3, 3, 3, 3)));
const __m128 val1 = _mm_setr_ps(src[pos0 ], src[pos1 ], src[pos2 ], src[pos3 ]);
const __m128 val2 = _mm_setr_ps(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1]);
/* val1 + (val2-val1)*mu */
const __m128 r0 = _mm_sub_ps(val2, val1);
const __m128 mu = _mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4);
const __m128 out = _mm_add_ps(val1, _mm_mul_ps(mu, r0));
_mm_store_ps(&dst[i], out);
frac4 = _mm_add_epi32(frac4, increment4);
pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS));
frac4 = _mm_and_si128(frac4, fracMask4);
}
/* NOTE: These four elements represent the position *after* the last four
* samples, so the lowest element is the next position to resample.
*/
pos = _mm_cvtsi128_si32(pos4);
frac = _mm_cvtsi128_si32(frac4);
for(;i < numsamples;++i)
{
dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE));
frac += increment;
pos += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
return dst;
}
|