1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
#include "config.h"
#ifdef HAVE_ARM_NEON_H
#include <arm_neon.h>
#endif
#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alu.h"
#include "hrtf.h"
static inline void ApplyCoeffsStep(ALuint Offset, ALfloat (*restrict Values)[2],
const ALuint IrSize,
ALfloat (*restrict Coeffs)[2],
const ALfloat (*restrict CoeffStep)[2],
ALfloat left, ALfloat right)
{
ALuint c;
float32x4_t leftright4;
{
float32x2_t leftright2 = vdup_n_f32(0.0);
leftright2 = vset_lane_f32(left, leftright2, 0);
leftright2 = vset_lane_f32(right, leftright2, 1);
leftright4 = vcombine_f32(leftright2, leftright2);
}
for(c = 0;c < IrSize;c += 2)
{
const ALuint o0 = (Offset+c)&HRIR_MASK;
const ALuint o1 = (o0+1)&HRIR_MASK;
float32x4_t vals = vcombine_f32(vld1_f32((float32_t*)&Values[o0][0]),
vld1_f32((float32_t*)&Values[o1][0]));
float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]);
float32x4_t deltas = vld1q_f32(&CoeffStep[c][0]);
vals = vmlaq_f32(vals, coefs, leftright4);
coefs = vaddq_f32(coefs, deltas);
vst1_f32((float32_t*)&Values[o0][0], vget_low_f32(vals));
vst1_f32((float32_t*)&Values[o1][0], vget_high_f32(vals));
vst1q_f32(&Coeffs[c][0], coefs);
}
}
static inline void ApplyCoeffs(ALuint Offset, ALfloat (*restrict Values)[2],
const ALuint IrSize,
ALfloat (*restrict Coeffs)[2],
ALfloat left, ALfloat right)
{
ALuint c;
float32x4_t leftright4;
{
float32x2_t leftright2 = vdup_n_f32(0.0);
leftright2 = vset_lane_f32(left, leftright2, 0);
leftright2 = vset_lane_f32(right, leftright2, 1);
leftright4 = vcombine_f32(leftright2, leftright2);
}
for(c = 0;c < IrSize;c += 2)
{
const ALuint o0 = (Offset+c)&HRIR_MASK;
const ALuint o1 = (o0+1)&HRIR_MASK;
float32x4_t vals = vcombine_f32(vld1_f32((float32_t*)&Values[o0][0]),
vld1_f32((float32_t*)&Values[o1][0]));
float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]);
vals = vmlaq_f32(vals, coefs, leftright4);
vst1_f32((float32_t*)&Values[o0][0], vget_low_f32(vals));
vst1_f32((float32_t*)&Values[o1][0], vget_high_f32(vals));
}
}
#define SUFFIX Neon
#include "mixer_inc.c"
#undef SUFFIX
void MixDirect_Neon(DirectParams *params, const ALfloat *restrict data, ALuint srcchan,
ALuint OutPos, ALuint BufferSize)
{
ALfloat (*restrict OutBuffer)[BUFFERSIZE] = params->OutBuffer;
ALuint Counter = maxu(params->Counter, OutPos) - OutPos;
ALfloat DrySend, Step;
float32x4_t gain;
ALuint c;
for(c = 0;c < MaxChannels;c++)
{
ALuint pos = 0;
Step = params->Mix.Gains.Step[srcchan][c];
if(Step != 1.0f && Counter > 0)
{
DrySend = params->Mix.Gains.Current[srcchan][c];
for(;BufferSize-pos > 3 && Counter-pos > 3;pos+=4)
{
OutBuffer[c][OutPos+pos ] += data[pos ]*DrySend;
DrySend *= Step;
OutBuffer[c][OutPos+pos+1] += data[pos+1]*DrySend;
DrySend *= Step;
OutBuffer[c][OutPos+pos+2] += data[pos+2]*DrySend;
DrySend *= Step;
OutBuffer[c][OutPos+pos+4] += data[pos+3]*DrySend;
DrySend *= Step;
}
if(!(BufferSize-pos > 3))
{
for(;pos < BufferSize && pos < Counter;pos++)
{
OutBuffer[c][OutPos+pos] += data[pos]*DrySend;
DrySend *= Step;
}
}
params->Mix.Gains.Current[srcchan][c] = DrySend;
}
DrySend = params->Mix.Gains.Target[srcchan][c];
if(!(DrySend > GAIN_SILENCE_THRESHOLD))
continue;
gain = vdupq_n_f32(DrySend);
for(;BufferSize-pos > 3;pos += 4)
{
const float32x4_t val4 = vld1q_f32(&data[pos]);
float32x4_t dry4 = vld1q_f32(&OutBuffer[c][OutPos+pos]);
dry4 = vaddq_f32(dry4, vmulq_f32(val4, gain));
vst1q_f32(&OutBuffer[c][OutPos+pos], dry4);
}
for(;pos < BufferSize;pos++)
OutBuffer[c][OutPos+pos] += data[pos]*DrySend;
}
}
void MixSend_Neon(SendParams *params, const ALfloat *restrict data,
ALuint OutPos, ALuint UNUSED(SamplesToDo), ALuint BufferSize)
{
ALfloat (*restrict OutBuffer)[BUFFERSIZE] = params->OutBuffer;
ALuint Counter = maxu(params->Counter, OutPos) - OutPos;
ALfloat WetGain, Step;
float32x4_t gain;
{
ALuint pos = 0;
Step = params->Gain.Step;
if(Step != 1.0f && Counter > 0)
{
WetGain = params->Gain.Current;
for(;BufferSize-pos > 3 && Counter-pos > 3;pos+=4)
{
OutBuffer[0][OutPos+pos ] += data[pos ]*WetGain;
WetGain *= Step;
OutBuffer[0][OutPos+pos+1] += data[pos+1]*WetGain;
WetGain *= Step;
OutBuffer[0][OutPos+pos+2] += data[pos+2]*WetGain;
WetGain *= Step;
OutBuffer[0][OutPos+pos+4] += data[pos+3]*WetGain;
WetGain *= Step;
}
if(!(BufferSize-pos > 3))
{
for(;pos < BufferSize && pos < Counter;pos++)
{
OutBuffer[0][OutPos+pos] += data[pos]*WetGain;
WetGain *= Step;
}
}
params->Gain.Current = WetGain;
}
WetGain = params->Gain.Target;
if(!(WetGain > GAIN_SILENCE_THRESHOLD))
return;
gain = vdupq_n_f32(WetGain);
for(;BufferSize-pos > 3;pos += 4)
{
const float32x4_t val4 = vld1q_f32(&data[pos]);
float32x4_t wet4 = vld1q_f32(&OutBuffer[0][OutPos+pos]);
wet4 = vaddq_f32(wet4, vmulq_f32(val4, gain));
vst1q_f32(&OutBuffer[0][OutPos+pos], wet4);
}
for(;pos < BufferSize;pos++)
OutBuffer[0][OutPos+pos] += data[pos] * WetGain;
}
}
|