1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
#include "config.h"
#ifdef HAVE_XMMINTRIN_H
#include <xmmintrin.h>
#endif
#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alu.h"
#include "alSource.h"
#include "alAuxEffectSlot.h"
#include "mixer_defs.h"
static __inline ALfloat lerp32(const ALfloat *vals, ALint step, ALuint frac)
{ return lerp(vals[0], vals[step], frac * (1.0f/FRACTIONONE)); }
void Resample_lerp32_SSE(const ALfloat *data, ALuint frac,
ALuint increment, ALuint NumChannels, ALfloat *RESTRICT OutBuffer,
ALuint BufferSize)
{
ALIGN(16) float value[3][4];
ALuint pos = 0;
ALuint i, j;
for(i = 0;i < BufferSize+1-3;i+=4)
{
__m128 x, y, a;
for(j = 0;j < 4;j++)
{
value[0][j] = data[(pos )*NumChannels];
value[1][j] = data[(pos+1)*NumChannels];
value[2][j] = frac * (1.0f/FRACTIONONE);
frac += increment;
pos += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
x = _mm_load_ps(value[0]);
y = _mm_load_ps(value[1]);
y = _mm_sub_ps(y, x);
a = _mm_load_ps(value[2]);
y = _mm_mul_ps(y, a);
x = _mm_add_ps(x, y);
_mm_store_ps(&OutBuffer[i], x);
}
for(;i < BufferSize+1;i++)
{
OutBuffer[i] = lerp32(data + pos*NumChannels, NumChannels, frac);
frac += increment;
pos += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
}
void Resample_cubic32_SSE(const ALfloat *data, ALuint frac,
ALuint increment, ALuint NumChannels, ALfloat *RESTRICT OutBuffer,
ALuint BufferSize)
{
/* Cubic interpolation mainly consists of a matrix4 * vector4 operation,
* followed by scalars being applied to the resulting elements before all
* four are added together for the final sample. */
static const __m128 matrix[4] = {
{ -0.5, 1.0f, -0.5f, 0.0f },
{ 1.5, -2.5f, 0.0f, 1.0f },
{ -1.5, 2.0f, 0.5f, 0.0f },
{ 0.5, -0.5f, 0.0f, 0.0f },
};
ALIGN(16) float value[4];
ALuint pos = 0;
ALuint i, j;
for(i = 0;i < BufferSize+1-3;i+=4)
{
__m128 result, final[4];
for(j = 0;j < 4;j++)
{
__m128 val4, s;
ALfloat mu;
val4 = _mm_set_ps(data[(pos-1)*NumChannels],
data[(pos )*NumChannels],
data[(pos+1)*NumChannels],
data[(pos+2)*NumChannels]);
mu = frac * (1.0f/FRACTIONONE);
s = _mm_set_ps(1.0f, mu, mu*mu, mu*mu*mu);
/* result = matrix * val4 */
result = _mm_mul_ps(val4, matrix[0]) ;
result = _mm_add_ps(result, _mm_mul_ps(val4, matrix[1]));
result = _mm_add_ps(result, _mm_mul_ps(val4, matrix[2]));
result = _mm_add_ps(result, _mm_mul_ps(val4, matrix[3]));
/* final[j] = result * { mu^0, mu^1, mu^2, mu^3 } */
final[j] = _mm_mul_ps(result, s);
frac += increment;
pos += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
/* Transpose the final "matrix" so adding the rows will give the four
* samples. TODO: Is this faster than doing..
* _mm_store_ps(value, result);
* OutBuffer[i] = value[0] + value[1] + value[2] + value[3];
* ..for each sample?
*/
_MM_TRANSPOSE4_PS(final[0], final[1], final[2], final[3]);
result = _mm_add_ps(_mm_add_ps(final[0], final[1]),
_mm_add_ps(final[2], final[3]));
_mm_store_ps(&OutBuffer[i], result);
}
for(;i < BufferSize+1;i++)
{
__m128 val4, s, result;
ALfloat mu;
val4 = _mm_set_ps(data[(pos-1)*NumChannels],
data[(pos )*NumChannels],
data[(pos+1)*NumChannels],
data[(pos+2)*NumChannels]);
mu = frac * (1.0f/FRACTIONONE);
s = _mm_set_ps(1.0f, mu, mu*mu, mu*mu*mu);
/* result = matrix * val4 */
result = _mm_mul_ps(val4, matrix[0]) ;
result = _mm_add_ps(result, _mm_mul_ps(val4, matrix[1]));
result = _mm_add_ps(result, _mm_mul_ps(val4, matrix[2]));
result = _mm_add_ps(result, _mm_mul_ps(val4, matrix[3]));
/* value = result * { mu^0, mu^1, mu^2, mu^3 } */
_mm_store_ps(value, _mm_mul_ps(result, s));
OutBuffer[i] = value[0] + value[1] + value[2] + value[3];
frac += increment;
pos += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
}
static __inline void ApplyCoeffsStep(ALuint Offset, ALfloat (*RESTRICT Values)[2],
const ALuint IrSize,
ALfloat (*RESTRICT Coeffs)[2],
ALfloat (*RESTRICT CoeffStep)[2],
ALfloat left, ALfloat right)
{
const __m128 lrlr = { left, right, left, right };
__m128 coeffs, deltas, imp0, imp1;
__m128 vals = _mm_setzero_ps();
ALuint i;
if((Offset&1))
{
const ALuint o0 = Offset&HRIR_MASK;
const ALuint o1 = (Offset+IrSize-1)&HRIR_MASK;
coeffs = _mm_load_ps(&Coeffs[0][0]);
deltas = _mm_load_ps(&CoeffStep[0][0]);
vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]);
imp0 = _mm_mul_ps(lrlr, coeffs);
coeffs = _mm_add_ps(coeffs, deltas);
vals = _mm_add_ps(imp0, vals);
_mm_store_ps(&Coeffs[0][0], coeffs);
_mm_storel_pi((__m64*)&Values[o0][0], vals);
for(i = 1;i < IrSize-1;i += 2)
{
const ALuint o2 = (Offset+i)&HRIR_MASK;
coeffs = _mm_load_ps(&Coeffs[i+1][0]);
deltas = _mm_load_ps(&CoeffStep[i+1][0]);
vals = _mm_load_ps(&Values[o2][0]);
imp1 = _mm_mul_ps(lrlr, coeffs);
coeffs = _mm_add_ps(coeffs, deltas);
imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
vals = _mm_add_ps(imp0, vals);
_mm_store_ps(&Coeffs[i+1][0], coeffs);
_mm_store_ps(&Values[o2][0], vals);
imp0 = imp1;
}
vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]);
imp0 = _mm_movehl_ps(imp0, imp0);
vals = _mm_add_ps(imp0, vals);
_mm_storel_pi((__m64*)&Values[o1][0], vals);
}
else
{
for(i = 0;i < IrSize;i += 2)
{
const ALuint o = (Offset + i)&HRIR_MASK;
coeffs = _mm_load_ps(&Coeffs[i][0]);
deltas = _mm_load_ps(&CoeffStep[i][0]);
vals = _mm_load_ps(&Values[o][0]);
imp0 = _mm_mul_ps(lrlr, coeffs);
coeffs = _mm_add_ps(coeffs, deltas);
vals = _mm_add_ps(imp0, vals);
_mm_store_ps(&Coeffs[i][0], coeffs);
_mm_store_ps(&Values[o][0], vals);
}
}
}
static __inline void ApplyCoeffs(ALuint Offset, ALfloat (*RESTRICT Values)[2],
const ALuint IrSize,
ALfloat (*RESTRICT Coeffs)[2],
ALfloat left, ALfloat right)
{
const __m128 lrlr = { left, right, left, right };
__m128 vals = _mm_setzero_ps();
__m128 coeffs;
ALuint i;
if((Offset&1))
{
const ALuint o0 = Offset&HRIR_MASK;
const ALuint o1 = (Offset+IrSize-1)&HRIR_MASK;
__m128 imp0, imp1;
coeffs = _mm_load_ps(&Coeffs[0][0]);
vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]);
imp0 = _mm_mul_ps(lrlr, coeffs);
vals = _mm_add_ps(imp0, vals);
_mm_storel_pi((__m64*)&Values[o0][0], vals);
for(i = 1;i < IrSize-1;i += 2)
{
const ALuint o2 = (Offset+i)&HRIR_MASK;
coeffs = _mm_load_ps(&Coeffs[i+1][0]);
vals = _mm_load_ps(&Values[o2][0]);
imp1 = _mm_mul_ps(lrlr, coeffs);
imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
vals = _mm_add_ps(imp0, vals);
_mm_store_ps(&Values[o2][0], vals);
imp0 = imp1;
}
vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]);
imp0 = _mm_movehl_ps(imp0, imp0);
vals = _mm_add_ps(imp0, vals);
_mm_storel_pi((__m64*)&Values[o1][0], vals);
}
else
{
for(i = 0;i < IrSize;i += 2)
{
const ALuint o = (Offset + i)&HRIR_MASK;
coeffs = _mm_load_ps(&Coeffs[i][0]);
vals = _mm_load_ps(&Values[o][0]);
vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs));
_mm_store_ps(&Values[o][0], vals);
}
}
}
void MixDirect_SSE(ALsource *Source, ALCdevice *Device, DirectParams *params,
const ALfloat *RESTRICT data, ALuint srcchan,
ALuint OutPos, ALuint SamplesToDo, ALuint BufferSize)
{
ALfloat (*RESTRICT DryBuffer)[BUFFERSIZE] = Device->DryBuffer;
ALfloat *RESTRICT ClickRemoval = Device->ClickRemoval;
ALfloat *RESTRICT PendingClicks = Device->PendingClicks;
ALfloat DrySend[MaxChannels];
ALuint pos;
ALuint c;
(void)Source;
for(c = 0;c < MaxChannels;c++)
DrySend[c] = params->Gains[srcchan][c];
pos = 0;
if(OutPos == 0)
{
for(c = 0;c < MaxChannels;c++)
ClickRemoval[c] -= data[pos]*DrySend[c];
}
for(c = 0;c < MaxChannels;c++)
{
const __m128 gain = _mm_set1_ps(DrySend[c]);
for(pos = 0;pos < BufferSize-3;pos += 4)
{
const __m128 val4 = _mm_load_ps(&data[pos]);
__m128 dry4 = _mm_load_ps(&DryBuffer[c][OutPos+pos]);
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain));
_mm_store_ps(&DryBuffer[c][OutPos+pos], dry4);
}
}
if(pos < BufferSize)
{
ALuint oldpos = pos;
for(c = 0;c < MaxChannels;c++)
{
pos = oldpos;
for(;pos < BufferSize;pos++)
DryBuffer[c][OutPos+pos] += data[pos]*DrySend[c];
}
}
if(OutPos+pos == SamplesToDo)
{
for(c = 0;c < MaxChannels;c++)
PendingClicks[c] += data[pos]*DrySend[c];
}
}
#define NO_MIXDIRECT
void MixSend_SSE(SendParams *params, const ALfloat *RESTRICT data,
ALuint OutPos, ALuint SamplesToDo, ALuint BufferSize)
{
ALeffectslot *Slot = params->Slot;
ALfloat *RESTRICT WetBuffer = Slot->WetBuffer;
ALfloat *RESTRICT WetClickRemoval = Slot->ClickRemoval;
ALfloat *RESTRICT WetPendingClicks = Slot->PendingClicks;
const ALfloat WetGain = params->Gain;
const __m128 gain = _mm_set1_ps(WetGain);
ALuint pos;
pos = 0;
if(OutPos == 0)
WetClickRemoval[0] -= data[pos] * WetGain;
for(pos = 0;pos < BufferSize-3;pos+=4)
{
const __m128 val4 = _mm_load_ps(&data[pos]);
__m128 wet4 = _mm_load_ps(&WetBuffer[OutPos+pos]);
wet4 = _mm_add_ps(wet4, _mm_mul_ps(val4, gain));
_mm_store_ps(&WetBuffer[OutPos+pos], wet4);
}
for(;pos < BufferSize;pos++)
WetBuffer[OutPos+pos] += data[pos] * WetGain;
if(OutPos == SamplesToDo)
WetPendingClicks[0] += data[pos] * WetGain;
}
#define NO_MIXSEND
#define SUFFIX SSE
#include "mixer_inc.c"
#undef SUFFIX
|