aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/mixer_sse41.c
blob: 374e7e3163b69db696baea731fa475856d0e471e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/**
 * OpenAL cross platform audio library
 * Copyright (C) 2014 by Timothy Arceri <t_arceri@yahoo.com.au>.
 * This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 *  License along with this library; if not, write to the
 *  Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 * Or go to http://www.gnu.org/copyleft/lgpl.html
 */

#include "config.h"

#include <xmmintrin.h>
#include <emmintrin.h>
#include <smmintrin.h>

#include "alu.h"
#include "mixer_defs.h"


const ALfloat *Resample_lerp32_SSE41(const ALfloat *src, ALuint frac, ALuint increment,
                                     ALfloat *restrict dst, ALuint numsamples)
{
    const __m128i increment4 = _mm_set1_epi32(increment*4);
    const __m128 fracOne4 = _mm_set1_ps(1.0f/FRACTIONONE);
    const __m128i fracMask4 = _mm_set1_epi32(FRACTIONMASK);
    alignas(16) union { ALuint i[4]; float f[4]; } pos_;
    alignas(16) union { ALuint i[4]; float f[4]; } frac_;
    __m128i frac4, pos4;
    ALuint pos;
    ALuint i;

    InitiatePositionArrays(frac, increment, frac_.i, pos_.i, 4);

    frac4 = _mm_castps_si128(_mm_load_ps(frac_.f));
    pos4 = _mm_castps_si128(_mm_load_ps(pos_.f));

    for(i = 0;numsamples-i > 3;i += 4)
    {
        const __m128 val1 = _mm_setr_ps(src[pos_.i[0]], src[pos_.i[1]], src[pos_.i[2]], src[pos_.i[3]]);
        const __m128 val2 = _mm_setr_ps(src[pos_.i[0]+1], src[pos_.i[1]+1], src[pos_.i[2]+1], src[pos_.i[3]+1]);

        /* val1 + (val2-val1)*mu */
        const __m128 r0 = _mm_sub_ps(val2, val1);
        const __m128 mu = _mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4);
        const __m128 out = _mm_add_ps(val1, _mm_mul_ps(mu, r0));

        _mm_store_ps(&dst[i], out);

        frac4 = _mm_add_epi32(frac4, increment4);
        pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS));
        frac4 = _mm_and_si128(frac4, fracMask4);

        pos_.i[0] = _mm_extract_epi32(pos4, 0);
        pos_.i[1] = _mm_extract_epi32(pos4, 1);
        pos_.i[2] = _mm_extract_epi32(pos4, 2);
        pos_.i[3] = _mm_extract_epi32(pos4, 3);
    }

    pos = pos_.i[0];
    frac = _mm_cvtsi128_si32(frac4);

    for(;i < numsamples;i++)
    {
        dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE));

        frac += increment;
        pos  += frac>>FRACTIONBITS;
        frac &= FRACTIONMASK;
    }
    return dst;
}

const ALfloat *Resample_cubic32_SSE41(const ALfloat *src, ALuint frac, ALuint increment,
                                      ALfloat *restrict dst, ALuint numsamples)
{
    const __m128i increment4 = _mm_set1_epi32(increment*4);
    const __m128i fracMask4 = _mm_set1_epi32(FRACTIONMASK);
    alignas(16) union { ALuint i[4]; float f[4]; } pos_;
    alignas(16) union { ALuint i[4]; float f[4]; } frac_;
    __m128i frac4, pos4;
    ALuint pos;
    ALuint i;

    InitiatePositionArrays(frac, increment, frac_.i, pos_.i, 4);

    frac4 = _mm_castps_si128(_mm_load_ps(frac_.f));
    pos4 = _mm_castps_si128(_mm_load_ps(pos_.f));

    --src;
    for(i = 0;numsamples-i > 3;i += 4)
    {
        const __m128 val0 = _mm_setr_ps(src[pos_.i[0]  ], src[pos_.i[1]  ], src[pos_.i[2]  ], src[pos_.i[3]  ]);
        const __m128 val1 = _mm_setr_ps(src[pos_.i[0]+1], src[pos_.i[1]+1], src[pos_.i[2]+1], src[pos_.i[3]+1]);
        const __m128 val2 = _mm_setr_ps(src[pos_.i[0]+2], src[pos_.i[1]+2], src[pos_.i[2]+2], src[pos_.i[3]+2]);
        const __m128 val3 = _mm_setr_ps(src[pos_.i[0]+3], src[pos_.i[1]+3], src[pos_.i[2]+3], src[pos_.i[3]+3]);
        __m128 k0 = _mm_load_ps(CubicLUT[frac_.i[0]]);
        __m128 k1 = _mm_load_ps(CubicLUT[frac_.i[1]]);
        __m128 k2 = _mm_load_ps(CubicLUT[frac_.i[2]]);
        __m128 k3 = _mm_load_ps(CubicLUT[frac_.i[3]]);
        __m128 out;

        _MM_TRANSPOSE4_PS(k0, k1, k2, k3);

        /* k0*val0 + k1*val1 + k2*val2 + k3*val3 */
        out = _mm_mul_ps(k0, val0);
        out = _mm_add_ps(out, _mm_mul_ps(k1, val1));
        out = _mm_add_ps(out, _mm_mul_ps(k2, val2));
        out = _mm_add_ps(out, _mm_mul_ps(k3, val3));
        _mm_store_ps(&dst[i], out);

        frac4 = _mm_add_epi32(frac4, increment4);
        pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS));
        frac4 = _mm_and_si128(frac4, fracMask4);

        pos_.i[0] = _mm_extract_epi32(pos4, 0);
        pos_.i[1] = _mm_extract_epi32(pos4, 1);
        pos_.i[2] = _mm_extract_epi32(pos4, 2);
        pos_.i[3] = _mm_extract_epi32(pos4, 3);
        frac_.i[0] = _mm_extract_epi32(frac4, 0);
        frac_.i[1] = _mm_extract_epi32(frac4, 1);
        frac_.i[2] = _mm_extract_epi32(frac4, 2);
        frac_.i[3] = _mm_extract_epi32(frac4, 3);
    }

    pos = pos_.i[0];
    frac = frac_.i[0];

    for(;i < numsamples;i++)
    {
        dst[i] = cubic(src[pos], src[pos+1], src[pos+2], src[pos+3], frac);

        frac += increment;
        pos  += frac>>FRACTIONBITS;
        frac &= FRACTIONMASK;
    }
    return dst;
}