1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
/**
* OpenAL cross platform audio library
* Copyright (C) 2014 by Timothy Arceri <t_arceri@yahoo.com.au>.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <xmmintrin.h>
#include <emmintrin.h>
#include <smmintrin.h>
#include "alu.h"
#include "mixer_defs.h"
const ALfloat *Resample_lerp32_SSE41(const BsincState* UNUSED(state), const ALfloat *restrict src,
ALuint frac, ALint increment, ALfloat *restrict dst,
ALsizei numsamples)
{
const __m128i increment4 = _mm_set1_epi32(increment*4);
const __m128 fracOne4 = _mm_set1_ps(1.0f/FRACTIONONE);
const __m128i fracMask4 = _mm_set1_epi32(FRACTIONMASK);
union { alignas(16) ALint i[4]; float f[4]; } pos_;
union { alignas(16) ALuint i[4]; float f[4]; } frac_;
__m128i frac4, pos4;
ALint pos;
ALsizei i;
InitiatePositionArrays(frac, increment, frac_.i, pos_.i, 4);
frac4 = _mm_castps_si128(_mm_load_ps(frac_.f));
pos4 = _mm_castps_si128(_mm_load_ps(pos_.f));
for(i = 0;numsamples-i > 3;i += 4)
{
const __m128 val1 = _mm_setr_ps(src[pos_.i[0]], src[pos_.i[1]], src[pos_.i[2]], src[pos_.i[3]]);
const __m128 val2 = _mm_setr_ps(src[pos_.i[0]+1], src[pos_.i[1]+1], src[pos_.i[2]+1], src[pos_.i[3]+1]);
/* val1 + (val2-val1)*mu */
const __m128 r0 = _mm_sub_ps(val2, val1);
const __m128 mu = _mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4);
const __m128 out = _mm_add_ps(val1, _mm_mul_ps(mu, r0));
_mm_store_ps(&dst[i], out);
frac4 = _mm_add_epi32(frac4, increment4);
pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS));
frac4 = _mm_and_si128(frac4, fracMask4);
pos_.i[0] = _mm_extract_epi32(pos4, 0);
pos_.i[1] = _mm_extract_epi32(pos4, 1);
pos_.i[2] = _mm_extract_epi32(pos4, 2);
pos_.i[3] = _mm_extract_epi32(pos4, 3);
}
/* NOTE: These four elements represent the position *after* the last four
* samples, so the lowest element is the next position to resample.
*/
pos = pos_.i[0];
frac = _mm_cvtsi128_si32(frac4);
for(;i < numsamples;i++)
{
dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE));
frac += increment;
pos += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
return dst;
}
const ALfloat *Resample_fir4_32_SSE41(const BsincState* UNUSED(state), const ALfloat *restrict src,
ALuint frac, ALint increment, ALfloat *restrict dst,
ALsizei numsamples)
{
const __m128i increment4 = _mm_set1_epi32(increment*4);
const __m128i fracMask4 = _mm_set1_epi32(FRACTIONMASK);
union { alignas(16) ALint i[4]; float f[4]; } pos_;
union { alignas(16) ALuint i[4]; float f[4]; } frac_;
__m128i frac4, pos4;
ALint pos;
ALsizei i;
InitiatePositionArrays(frac, increment, frac_.i, pos_.i, 4);
frac4 = _mm_castps_si128(_mm_load_ps(frac_.f));
pos4 = _mm_castps_si128(_mm_load_ps(pos_.f));
--src;
for(i = 0;numsamples-i > 3;i += 4)
{
const __m128 val0 = _mm_loadu_ps(&src[pos_.i[0]]);
const __m128 val1 = _mm_loadu_ps(&src[pos_.i[1]]);
const __m128 val2 = _mm_loadu_ps(&src[pos_.i[2]]);
const __m128 val3 = _mm_loadu_ps(&src[pos_.i[3]]);
__m128 k0 = _mm_load_ps(ResampleCoeffs.FIR4[frac_.i[0]]);
__m128 k1 = _mm_load_ps(ResampleCoeffs.FIR4[frac_.i[1]]);
__m128 k2 = _mm_load_ps(ResampleCoeffs.FIR4[frac_.i[2]]);
__m128 k3 = _mm_load_ps(ResampleCoeffs.FIR4[frac_.i[3]]);
__m128 out;
k0 = _mm_mul_ps(k0, val0);
k1 = _mm_mul_ps(k1, val1);
k2 = _mm_mul_ps(k2, val2);
k3 = _mm_mul_ps(k3, val3);
k0 = _mm_hadd_ps(k0, k1);
k2 = _mm_hadd_ps(k2, k3);
out = _mm_hadd_ps(k0, k2);
_mm_store_ps(&dst[i], out);
frac4 = _mm_add_epi32(frac4, increment4);
pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS));
frac4 = _mm_and_si128(frac4, fracMask4);
pos_.i[0] = _mm_extract_epi32(pos4, 0);
pos_.i[1] = _mm_extract_epi32(pos4, 1);
pos_.i[2] = _mm_extract_epi32(pos4, 2);
pos_.i[3] = _mm_extract_epi32(pos4, 3);
frac_.i[0] = _mm_extract_epi32(frac4, 0);
frac_.i[1] = _mm_extract_epi32(frac4, 1);
frac_.i[2] = _mm_extract_epi32(frac4, 2);
frac_.i[3] = _mm_extract_epi32(frac4, 3);
}
pos = pos_.i[0];
frac = frac_.i[0];
for(;i < numsamples;i++)
{
dst[i] = resample_fir4(src[pos], src[pos+1], src[pos+2], src[pos+3], frac);
frac += increment;
pos += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
return dst;
}
const ALfloat *Resample_fir8_32_SSE41(const BsincState* UNUSED(state), const ALfloat *restrict src,
ALuint frac, ALint increment, ALfloat *restrict dst,
ALsizei numsamples)
{
const __m128i increment4 = _mm_set1_epi32(increment*4);
const __m128i fracMask4 = _mm_set1_epi32(FRACTIONMASK);
union { alignas(16) ALint i[4]; float f[4]; } pos_;
union { alignas(16) ALuint i[4]; float f[4]; } frac_;
__m128i frac4, pos4;
ALsizei i, j;
ALint pos;
InitiatePositionArrays(frac, increment, frac_.i, pos_.i, 4);
frac4 = _mm_castps_si128(_mm_load_ps(frac_.f));
pos4 = _mm_castps_si128(_mm_load_ps(pos_.f));
src -= 3;
for(i = 0;numsamples-i > 3;i += 4)
{
__m128 out[2];
for(j = 0;j < 8;j+=4)
{
const __m128 val0 = _mm_loadu_ps(&src[pos_.i[0]+j]);
const __m128 val1 = _mm_loadu_ps(&src[pos_.i[1]+j]);
const __m128 val2 = _mm_loadu_ps(&src[pos_.i[2]+j]);
const __m128 val3 = _mm_loadu_ps(&src[pos_.i[3]+j]);
__m128 k0 = _mm_load_ps(&ResampleCoeffs.FIR8[frac_.i[0]][j]);
__m128 k1 = _mm_load_ps(&ResampleCoeffs.FIR8[frac_.i[1]][j]);
__m128 k2 = _mm_load_ps(&ResampleCoeffs.FIR8[frac_.i[2]][j]);
__m128 k3 = _mm_load_ps(&ResampleCoeffs.FIR8[frac_.i[3]][j]);
k0 = _mm_mul_ps(k0, val0);
k1 = _mm_mul_ps(k1, val1);
k2 = _mm_mul_ps(k2, val2);
k3 = _mm_mul_ps(k3, val3);
k0 = _mm_hadd_ps(k0, k1);
k2 = _mm_hadd_ps(k2, k3);
out[j>>2] = _mm_hadd_ps(k0, k2);
}
out[0] = _mm_add_ps(out[0], out[1]);
_mm_store_ps(&dst[i], out[0]);
frac4 = _mm_add_epi32(frac4, increment4);
pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS));
frac4 = _mm_and_si128(frac4, fracMask4);
pos_.i[0] = _mm_extract_epi32(pos4, 0);
pos_.i[1] = _mm_extract_epi32(pos4, 1);
pos_.i[2] = _mm_extract_epi32(pos4, 2);
pos_.i[3] = _mm_extract_epi32(pos4, 3);
frac_.i[0] = _mm_extract_epi32(frac4, 0);
frac_.i[1] = _mm_extract_epi32(frac4, 1);
frac_.i[2] = _mm_extract_epi32(frac4, 2);
frac_.i[3] = _mm_extract_epi32(frac4, 3);
}
pos = pos_.i[0];
frac = frac_.i[0];
for(;i < numsamples;i++)
{
dst[i] = resample_fir8(src[pos ], src[pos+1], src[pos+2], src[pos+3],
src[pos+4], src[pos+5], src[pos+6], src[pos+7], frac);
frac += increment;
pos += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
return dst;
}
|