blob: 181e036a6e90fec99b9a2f27f8f989dfc333e1f5 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
#ifndef UHJFILTER_H
#define UHJFILTER_H
#include "AL/al.h"
#include "alMain.h"
#include "almalloc.h"
struct AllPassState {
ALfloat z[2]{0.0f, 0.0f};
};
/* Encoding 2-channel UHJ from B-Format is done as:
*
* S = 0.9396926*W + 0.1855740*X
* D = j(-0.3420201*W + 0.5098604*X) + 0.6554516*Y
*
* Left = (S + D)/2.0
* Right = (S - D)/2.0
*
* where j is a wide-band +90 degree phase shift.
*
* The phase shift is done using a Hilbert transform, described here:
* https://web.archive.org/web/20060708031958/http://www.biochem.oulu.fi/~oniemita/dsp/hilbert/
* It works using 2 sets of 4 chained filters. The first filter chain produces
* a phase shift of varying magnitude over a wide range of frequencies, while
* the second filter chain produces a phase shift 90 degrees ahead of the
* first over the same range.
*
* Combining these two stages requires the use of three filter chains. S-
* channel output uses a Filter1 chain on the W and X channel mix, while the D-
* channel output uses a Filter1 chain on the Y channel plus a Filter2 chain on
* the W and X channel mix. This results in the W and X input mix on the D-
* channel output having the required +90 degree phase shift relative to the
* other inputs.
*/
struct Uhj2Encoder {
AllPassState mFilter1_Y[4];
AllPassState mFilter2_WX[4];
AllPassState mFilter1_WX[4];
ALfloat mLastY{0.0f}, mLastWX{0.0f};
/* Encodes a 2-channel UHJ (stereo-compatible) signal from a B-Format input
* signal. The input must use FuMa channel ordering and scaling.
*/
void encode(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, FloatBufferLine *InSamples,
const ALsizei SamplesToDo);
DEF_NEWDEL(Uhj2Encoder)
};
#endif /* UHJFILTER_H */
|