1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
|
#ifndef AL_MAIN_H
#define AL_MAIN_H
#include <string.h>
#include <stdio.h>
#include <stddef.h>
#include <stdarg.h>
#include <assert.h>
#include <math.h>
#include <limits.h>
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#ifdef HAVE_INTRIN_H
#include <intrin.h>
#endif
#include <array>
#include <vector>
#include <string>
#include <chrono>
#include <algorithm>
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "inprogext.h"
#include "atomic.h"
#include "vector.h"
#include "almalloc.h"
#include "threads.h"
#include "ambidefs.h"
template<typename T, size_t N>
constexpr inline size_t countof(const T(&)[N]) noexcept
{ return N; }
#define COUNTOF countof
#ifdef __has_builtin
#define HAS_BUILTIN __has_builtin
#else
#define HAS_BUILTIN(x) (0)
#endif
#ifdef __GNUC__
/* LIKELY optimizes the case where the condition is true. The condition is not
* required to be true, but it can result in more optimal code for the true
* path at the expense of a less optimal false path.
*/
#define LIKELY(x) __builtin_expect(!!(x), !0)
/* The opposite of LIKELY, optimizing the case where the condition is false. */
#define UNLIKELY(x) __builtin_expect(!!(x), 0)
/* Unlike LIKELY, ASSUME requires the condition to be true or else it invokes
* undefined behavior. It's essentially an assert without actually checking the
* condition at run-time, allowing for stronger optimizations than LIKELY.
*/
#if HAS_BUILTIN(__builtin_assume)
#define ASSUME __builtin_assume
#else
#define ASSUME(x) do { if(!(x)) __builtin_unreachable(); } while(0)
#endif
#else
#define LIKELY(x) (!!(x))
#define UNLIKELY(x) (!!(x))
#ifdef _MSC_VER
#define ASSUME __assume
#else
#define ASSUME(x) ((void)0)
#endif
#endif
#ifndef UNUSED
#if defined(__cplusplus)
#define UNUSED(x)
#elif defined(__GNUC__)
#define UNUSED(x) UNUSED_##x __attribute__((unused))
#elif defined(__LCLINT__)
#define UNUSED(x) /*@unused@*/ x
#else
#define UNUSED(x) x
#endif
#endif
/* Calculates the size of a struct with N elements of a flexible array member.
* GCC and Clang allow offsetof(Type, fam[N]) for this, but MSVC seems to have
* trouble, so a bit more verbose workaround is needed.
*/
#define FAM_SIZE(T, M, N) (offsetof(T, M) + sizeof(((T*)NULL)->M[0])*(N))
using ALint64 = ALint64SOFT;
using ALuint64 = ALuint64SOFT;
#ifndef U64
#if defined(_MSC_VER)
#define U64(x) ((ALuint64)(x##ui64))
#elif SIZEOF_LONG == 8
#define U64(x) ((ALuint64)(x##ul))
#elif SIZEOF_LONG_LONG == 8
#define U64(x) ((ALuint64)(x##ull))
#endif
#endif
#ifndef I64
#if defined(_MSC_VER)
#define I64(x) ((ALint64)(x##i64))
#elif SIZEOF_LONG == 8
#define I64(x) ((ALint64)(x##l))
#elif SIZEOF_LONG_LONG == 8
#define I64(x) ((ALint64)(x##ll))
#endif
#endif
/* Define CTZ macros (count trailing zeros), and POPCNT macros (population
* count/count 1 bits), for 32- and 64-bit integers. The CTZ macros' results
* are *UNDEFINED* if the value is 0.
*/
#ifdef __GNUC__
#define POPCNT32 __builtin_popcount
#define CTZ32 __builtin_ctz
#if SIZEOF_LONG == 8
#define POPCNT64 __builtin_popcountl
#define CTZ64 __builtin_ctzl
#else
#define POPCNT64 __builtin_popcountll
#define CTZ64 __builtin_ctzll
#endif
#elif defined(HAVE_BITSCANFORWARD64_INTRINSIC)
inline int msvc64_popcnt32(ALuint v)
{ return (int)__popcnt(v); }
#define POPCNT32 msvc64_popcnt32
inline int msvc64_ctz32(ALuint v)
{
unsigned long idx = 32;
_BitScanForward(&idx, v);
return (int)idx;
}
#define CTZ32 msvc64_ctz32
inline int msvc64_popcnt64(ALuint64 v)
{ return (int)__popcnt64(v); }
#define POPCNT64 msvc64_popcnt64
inline int msvc64_ctz64(ALuint64 v)
{
unsigned long idx = 64;
_BitScanForward64(&idx, v);
return (int)idx;
}
#define CTZ64 msvc64_ctz64
#elif defined(HAVE_BITSCANFORWARD_INTRINSIC)
inline int msvc_popcnt32(ALuint v)
{ return (int)__popcnt(v); }
#define POPCNT32 msvc_popcnt32
inline int msvc_ctz32(ALuint v)
{
unsigned long idx = 32;
_BitScanForward(&idx, v);
return (int)idx;
}
#define CTZ32 msvc_ctz32
inline int msvc_popcnt64(ALuint64 v)
{ return (int)(__popcnt((ALuint)v) + __popcnt((ALuint)(v>>32))); }
#define POPCNT64 msvc_popcnt64
inline int msvc_ctz64(ALuint64 v)
{
unsigned long idx = 64;
if(!_BitScanForward(&idx, v&0xffffffff))
{
if(_BitScanForward(&idx, v>>32))
idx += 32;
}
return (int)idx;
}
#define CTZ64 msvc_ctz64
#else
/* There be black magics here. The popcnt method is derived from
* https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
* while the ctz-utilizing-popcnt algorithm is shown here
* http://www.hackersdelight.org/hdcodetxt/ntz.c.txt
* as the ntz2 variant. These likely aren't the most efficient methods, but
* they're good enough if the GCC or MSVC intrinsics aren't available.
*/
inline int fallback_popcnt32(ALuint v)
{
v = v - ((v >> 1) & 0x55555555u);
v = (v & 0x33333333u) + ((v >> 2) & 0x33333333u);
v = (v + (v >> 4)) & 0x0f0f0f0fu;
return (int)((v * 0x01010101u) >> 24);
}
#define POPCNT32 fallback_popcnt32
inline int fallback_ctz32(ALuint value)
{ return fallback_popcnt32(~value & (value - 1)); }
#define CTZ32 fallback_ctz32
inline int fallback_popcnt64(ALuint64 v)
{
v = v - ((v >> 1) & U64(0x5555555555555555));
v = (v & U64(0x3333333333333333)) + ((v >> 2) & U64(0x3333333333333333));
v = (v + (v >> 4)) & U64(0x0f0f0f0f0f0f0f0f);
return (int)((v * U64(0x0101010101010101)) >> 56);
}
#define POPCNT64 fallback_popcnt64
inline int fallback_ctz64(ALuint64 value)
{ return fallback_popcnt64(~value & (value - 1)); }
#define CTZ64 fallback_ctz64
#endif
#if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__)
#define IS_LITTLE_ENDIAN (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
#else
static const union {
ALuint u;
ALubyte b[sizeof(ALuint)];
} EndianTest = { 1 };
#define IS_LITTLE_ENDIAN (EndianTest.b[0] == 1)
#endif
struct HrtfEntry;
struct HrtfHandle;
struct EnumeratedHrtf;
struct DirectHrtfState;
struct FrontStablizer;
struct Compressor;
struct BackendBase;
struct ALbuffer;
struct ALeffect;
struct ALfilter;
struct EffectState;
struct Uhj2Encoder;
class BFormatDec;
class AmbiUpsampler;
struct bs2b;
#define DEFAULT_UPDATE_SIZE (1024)
#define DEFAULT_NUM_UPDATES (3)
#define DEFAULT_OUTPUT_RATE (44100)
#define MIN_OUTPUT_RATE (8000)
/* Find the next power-of-2 for non-power-of-2 numbers. */
inline ALuint NextPowerOf2(ALuint value) noexcept
{
if(value > 0)
{
value--;
value |= value>>1;
value |= value>>2;
value |= value>>4;
value |= value>>8;
value |= value>>16;
}
return value+1;
}
/** Round up a value to the next multiple. */
inline size_t RoundUp(size_t value, size_t r) noexcept
{
value += r-1;
return value - (value%r);
}
/* Fast float-to-int conversion. No particular rounding mode is assumed; the
* IEEE-754 default is round-to-nearest with ties-to-even, though an app could
* change it on its own threads. On some systems, a truncating conversion may
* always be the fastest method.
*/
inline ALint fastf2i(ALfloat f) noexcept
{
#if defined(HAVE_INTRIN_H) && ((defined(_M_IX86_FP) && (_M_IX86_FP > 0)) || defined(_M_X64))
return _mm_cvt_ss2si(_mm_set1_ps(f));
#elif defined(_MSC_VER) && defined(_M_IX86_FP)
ALint i;
__asm fld f
__asm fistp i
return i;
#elif (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__))
ALint i;
#ifdef __SSE_MATH__
__asm__("cvtss2si %1, %0" : "=r"(i) : "x"(f));
#else
__asm__ __volatile__("fistpl %0" : "=m"(i) : "t"(f) : "st");
#endif
return i;
/* On GCC when compiling with -fno-math-errno, lrintf can be inlined to
* some simple instructions. Clang does not inline it, always generating a
* libc call, while MSVC's implementation is horribly slow, so always fall
* back to a normal integer conversion for them.
*/
#elif !defined(_MSC_VER) && !defined(__clang__)
return lrintf(f);
#else
return (ALint)f;
#endif
}
/* Converts float-to-int using standard behavior (truncation). */
inline int float2int(float f) noexcept
{
#if ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \
!defined(__SSE_MATH__)) || (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP == 0)
ALint sign, shift, mant;
union {
ALfloat f;
ALint i;
} conv;
conv.f = f;
sign = (conv.i>>31) | 1;
shift = ((conv.i>>23)&0xff) - (127+23);
/* Over/underflow */
if(UNLIKELY(shift >= 31 || shift < -23))
return 0;
mant = (conv.i&0x7fffff) | 0x800000;
if(LIKELY(shift < 0))
return (mant >> -shift) * sign;
return (mant << shift) * sign;
#else
return (ALint)f;
#endif
}
/* Rounds a float to the nearest integral value, according to the current
* rounding mode. This is essentially an inlined version of rintf, although
* makes fewer promises (e.g. -0 or -0.25 rounded to 0 may result in +0).
*/
inline float fast_roundf(float f) noexcept
{
#if (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \
!defined(__SSE_MATH__)
float out;
__asm__ __volatile__("frndint" : "=t"(out) : "0"(f));
return out;
#else
/* Integral limit, where sub-integral precision is not available for
* floats.
*/
static const float ilim[2] = {
8388608.0f /* 0x1.0p+23 */,
-8388608.0f /* -0x1.0p+23 */
};
ALuint sign, expo;
union {
ALfloat f;
ALuint i;
} conv;
conv.f = f;
sign = (conv.i>>31)&0x01;
expo = (conv.i>>23)&0xff;
if(UNLIKELY(expo >= 150/*+23*/))
{
/* An exponent (base-2) of 23 or higher is incapable of sub-integral
* precision, so it's already an integral value. We don't need to worry
* about infinity or NaN here.
*/
return f;
}
/* Adding the integral limit to the value (with a matching sign) forces a
* result that has no sub-integral precision, and is consequently forced to
* round to an integral value. Removing the integral limit then restores
* the initial value rounded to the integral. The compiler should not
* optimize this out because of non-associative rules on floating-point
* math (as long as you don't use -fassociative-math,
* -funsafe-math-optimizations, -ffast-math, or -Ofast, in which case this
* may break).
*/
f += ilim[sign];
return f - ilim[sign];
#endif
}
enum DevProbe {
ALL_DEVICE_PROBE,
CAPTURE_DEVICE_PROBE
};
enum Channel {
FrontLeft = 0,
FrontRight,
FrontCenter,
LFE,
BackLeft,
BackRight,
BackCenter,
SideLeft,
SideRight,
UpperFrontLeft,
UpperFrontRight,
UpperBackLeft,
UpperBackRight,
LowerFrontLeft,
LowerFrontRight,
LowerBackLeft,
LowerBackRight,
Aux0,
Aux1,
Aux2,
Aux3,
Aux4,
Aux5,
Aux6,
Aux7,
Aux8,
Aux9,
Aux10,
Aux11,
Aux12,
Aux13,
Aux14,
Aux15,
InvalidChannel
};
/* Device formats */
enum DevFmtType {
DevFmtByte = ALC_BYTE_SOFT,
DevFmtUByte = ALC_UNSIGNED_BYTE_SOFT,
DevFmtShort = ALC_SHORT_SOFT,
DevFmtUShort = ALC_UNSIGNED_SHORT_SOFT,
DevFmtInt = ALC_INT_SOFT,
DevFmtUInt = ALC_UNSIGNED_INT_SOFT,
DevFmtFloat = ALC_FLOAT_SOFT,
DevFmtTypeDefault = DevFmtFloat
};
enum DevFmtChannels {
DevFmtMono = ALC_MONO_SOFT,
DevFmtStereo = ALC_STEREO_SOFT,
DevFmtQuad = ALC_QUAD_SOFT,
DevFmtX51 = ALC_5POINT1_SOFT,
DevFmtX61 = ALC_6POINT1_SOFT,
DevFmtX71 = ALC_7POINT1_SOFT,
DevFmtAmbi3D = ALC_BFORMAT3D_SOFT,
/* Similar to 5.1, except using rear channels instead of sides */
DevFmtX51Rear = 0x80000000,
DevFmtChannelsDefault = DevFmtStereo
};
#define MAX_OUTPUT_CHANNELS (16)
/* DevFmtType traits, providing the type, etc given a DevFmtType. */
template<DevFmtType T>
struct DevFmtTypeTraits { };
template<>
struct DevFmtTypeTraits<DevFmtByte> { using Type = ALbyte; };
template<>
struct DevFmtTypeTraits<DevFmtUByte> { using Type = ALubyte; };
template<>
struct DevFmtTypeTraits<DevFmtShort> { using Type = ALshort; };
template<>
struct DevFmtTypeTraits<DevFmtUShort> { using Type = ALushort; };
template<>
struct DevFmtTypeTraits<DevFmtInt> { using Type = ALint; };
template<>
struct DevFmtTypeTraits<DevFmtUInt> { using Type = ALuint; };
template<>
struct DevFmtTypeTraits<DevFmtFloat> { using Type = ALfloat; };
ALsizei BytesFromDevFmt(DevFmtType type) noexcept;
ALsizei ChannelsFromDevFmt(DevFmtChannels chans, ALsizei ambiorder) noexcept;
inline ALsizei FrameSizeFromDevFmt(DevFmtChannels chans, DevFmtType type, ALsizei ambiorder) noexcept
{ return ChannelsFromDevFmt(chans, ambiorder) * BytesFromDevFmt(type); }
enum class AmbiLayout {
FuMa = ALC_FUMA_SOFT, /* FuMa channel order */
ACN = ALC_ACN_SOFT, /* ACN channel order */
Default = ACN
};
enum class AmbiNorm {
FuMa = ALC_FUMA_SOFT, /* FuMa normalization */
SN3D = ALC_SN3D_SOFT, /* SN3D normalization */
N3D = ALC_N3D_SOFT, /* N3D normalization */
Default = SN3D
};
enum DeviceType {
Playback,
Capture,
Loopback
};
enum RenderMode {
NormalRender,
StereoPair,
HrtfRender
};
using ChannelConfig = ALfloat[MAX_AMBI_COEFFS];
struct BFChannelConfig {
ALfloat Scale;
ALsizei Index;
};
union AmbiConfig {
/* Ambisonic coefficients for mixing to the dry buffer. */
ChannelConfig Coeffs[MAX_OUTPUT_CHANNELS];
/* Coefficient channel mapping for mixing to the dry buffer. */
BFChannelConfig Map[MAX_OUTPUT_CHANNELS];
};
struct BufferSubList {
uint64_t FreeMask{~uint64_t{}};
ALbuffer *Buffers{nullptr}; /* 64 */
BufferSubList() noexcept = default;
BufferSubList(const BufferSubList&) = delete;
BufferSubList(BufferSubList&& rhs) noexcept : FreeMask{rhs.FreeMask}, Buffers{rhs.Buffers}
{ rhs.FreeMask = ~uint64_t{}; rhs.Buffers = nullptr; }
~BufferSubList();
BufferSubList& operator=(const BufferSubList&) = delete;
BufferSubList& operator=(BufferSubList&& rhs) noexcept
{ std::swap(FreeMask, rhs.FreeMask); std::swap(Buffers, rhs.Buffers); return *this; }
};
struct EffectSubList {
uint64_t FreeMask{~uint64_t{}};
ALeffect *Effects{nullptr}; /* 64 */
EffectSubList() noexcept = default;
EffectSubList(const EffectSubList&) = delete;
EffectSubList(EffectSubList&& rhs) noexcept : FreeMask{rhs.FreeMask}, Effects{rhs.Effects}
{ rhs.FreeMask = ~uint64_t{}; rhs.Effects = nullptr; }
~EffectSubList();
EffectSubList& operator=(const EffectSubList&) = delete;
EffectSubList& operator=(EffectSubList&& rhs) noexcept
{ std::swap(FreeMask, rhs.FreeMask); std::swap(Effects, rhs.Effects); return *this; }
};
struct FilterSubList {
uint64_t FreeMask{~uint64_t{}};
ALfilter *Filters{nullptr}; /* 64 */
FilterSubList() noexcept = default;
FilterSubList(const FilterSubList&) = delete;
FilterSubList(FilterSubList&& rhs) noexcept : FreeMask{rhs.FreeMask}, Filters{rhs.Filters}
{ rhs.FreeMask = ~uint64_t{}; rhs.Filters = nullptr; }
~FilterSubList();
FilterSubList& operator=(const FilterSubList&) = delete;
FilterSubList& operator=(FilterSubList&& rhs) noexcept
{ std::swap(FreeMask, rhs.FreeMask); std::swap(Filters, rhs.Filters); return *this; }
};
/* Maximum delay in samples for speaker distance compensation. */
#define MAX_DELAY_LENGTH 1024
class DistanceComp {
public:
struct DistData {
ALfloat Gain{1.0f};
ALsizei Length{0}; /* Valid range is [0...MAX_DELAY_LENGTH). */
ALfloat *Buffer{nullptr};
};
private:
DistData mChannel[MAX_OUTPUT_CHANNELS];
al::vector<ALfloat,16> mSamples;
public:
void resize(size_t new_size) { mSamples.resize(new_size); }
void shrink_to_fit() { mSamples.shrink_to_fit(); }
void clear() noexcept
{
for(auto &chan : mChannel)
{
chan.Gain = 1.0f;
chan.Length = 0;
chan.Buffer = nullptr;
}
mSamples.clear();
}
DistData *begin() noexcept { return std::begin(mChannel); }
const DistData *begin() const noexcept { return std::begin(mChannel); }
const DistData *cbegin() const noexcept { return std::begin(mChannel); }
DistData *end() noexcept { return std::end(mChannel); }
const DistData *end() const noexcept { return std::end(mChannel); }
const DistData *cend() const noexcept { return std::end(mChannel); }
ALfloat *data() noexcept { return mSamples.data(); }
const ALfloat *data() const noexcept { return mSamples.data(); }
DistData& operator[](size_t o) noexcept { return mChannel[o]; }
const DistData& operator[](size_t o) const noexcept { return mChannel[o]; }
};
/* Size for temporary storage of buffer data, in ALfloats. Larger values need
* more memory, while smaller values may need more iterations. The value needs
* to be a sensible size, however, as it constrains the max stepping value used
* for mixing, as well as the maximum number of samples per mixing iteration.
*/
#define BUFFERSIZE 2048
struct MixParams {
AmbiConfig Ambi{};
/* Number of coefficients in each Ambi.Coeffs to mix together (4 for first-
* order, 9 for second-order, etc). If the count is 0, Ambi.Map is used
* instead to map each output to a coefficient index.
*/
ALsizei CoeffCount{0};
ALfloat (*Buffer)[BUFFERSIZE]{nullptr};
ALsizei NumChannels{0};
};
struct RealMixParams {
Channel ChannelName[MAX_OUTPUT_CHANNELS]{};
ALfloat (*Buffer)[BUFFERSIZE]{nullptr};
ALsizei NumChannels{0};
};
using POSTPROCESS = void(*)(ALCdevice *device, ALsizei SamplesToDo);
struct ALCdevice_struct {
RefCount ref{1u};
std::atomic<bool> Connected{true};
const DeviceType Type{};
ALuint Frequency{};
ALuint UpdateSize{};
ALuint NumUpdates{};
DevFmtChannels FmtChans{};
DevFmtType FmtType{};
ALboolean IsHeadphones{AL_FALSE};
ALsizei mAmbiOrder{0};
/* For DevFmtAmbi* output only, specifies the channel order and
* normalization.
*/
AmbiLayout mAmbiLayout{AmbiLayout::Default};
AmbiNorm mAmbiScale{AmbiNorm::Default};
ALCenum LimiterState{ALC_DONT_CARE_SOFT};
std::string DeviceName;
// Device flags
ALuint Flags{0u};
std::string HrtfName;
al::vector<EnumeratedHrtf> HrtfList;
ALCenum HrtfStatus{ALC_FALSE};
std::atomic<ALCenum> LastError{ALC_NO_ERROR};
// Maximum number of sources that can be created
ALuint SourcesMax{};
// Maximum number of slots that can be created
ALuint AuxiliaryEffectSlotMax{};
ALCuint NumMonoSources{};
ALCuint NumStereoSources{};
ALsizei NumAuxSends{};
// Map of Buffers for this device
std::mutex BufferLock;
al::vector<BufferSubList> BufferList;
// Map of Effects for this device
std::mutex EffectLock;
al::vector<EffectSubList> EffectList;
// Map of Filters for this device
std::mutex FilterLock;
al::vector<FilterSubList> FilterList;
/* Rendering mode. */
RenderMode mRenderMode{NormalRender};
/* The average speaker distance as determined by the ambdec configuration
* (or alternatively, by the NFC-HOA reference delay). Only used for NFC.
*/
ALfloat AvgSpeakerDist{0.0f};
ALuint SamplesDone{0u};
std::chrono::nanoseconds ClockBase{0};
std::chrono::nanoseconds FixedLatency{0};
/* Temp storage used for mixer processing. */
alignas(16) ALfloat TempBuffer[4][BUFFERSIZE];
/* Mixing buffer used by the Dry mix, FOAOut, and Real out. */
al::vector<std::array<ALfloat,BUFFERSIZE>, 16> MixBuffer;
/* The "dry" path corresponds to the main output. */
MixParams Dry;
ALsizei NumChannelsPerOrder[MAX_AMBI_ORDER+1]{};
/* First-order ambisonics output, to be upsampled to the dry buffer if different. */
MixParams FOAOut;
/* "Real" output, which will be written to the device buffer. May alias the
* dry buffer.
*/
RealMixParams RealOut;
/* HRTF state and info */
std::unique_ptr<DirectHrtfState> mHrtfState;
HrtfEntry *mHrtf{nullptr};
/* UHJ encoder state */
std::unique_ptr<Uhj2Encoder> Uhj_Encoder;
/* High quality Ambisonic decoder */
std::unique_ptr<BFormatDec> AmbiDecoder;
/* Stereo-to-binaural filter */
std::unique_ptr<bs2b> Bs2b;
/* First-order ambisonic upsampler for higher-order output */
std::unique_ptr<AmbiUpsampler> AmbiUp;
POSTPROCESS PostProcess{};
std::unique_ptr<FrontStablizer> Stablizer;
std::unique_ptr<Compressor> Limiter;
/* Delay buffers used to compensate for speaker distances. */
DistanceComp ChannelDelay;
/* Dithering control. */
ALfloat DitherDepth{0.0f};
ALuint DitherSeed{0u};
/* Running count of the mixer invocations, in 31.1 fixed point. This
* actually increments *twice* when mixing, first at the start and then at
* the end, so the bottom bit indicates if the device is currently mixing
* and the upper bits indicates how many mixes have been done.
*/
RefCount MixCount{0u};
// Contexts created on this device
std::atomic<ALCcontext*> ContextList{nullptr};
/* This lock protects the device state (format, update size, etc) from
* being from being changed in multiple threads, or being accessed while
* being changed. It's also used to serialize calls to the backend.
*/
std::mutex StateLock;
std::unique_ptr<BackendBase> Backend;
std::atomic<ALCdevice*> next{nullptr};
ALCdevice_struct(DeviceType type);
ALCdevice_struct(const ALCdevice_struct&) = delete;
ALCdevice_struct& operator=(const ALCdevice_struct&) = delete;
~ALCdevice_struct();
ALsizei bytesFromFmt() const noexcept { return BytesFromDevFmt(FmtType); }
ALsizei channelsFromFmt() const noexcept { return ChannelsFromDevFmt(FmtChans, mAmbiOrder); }
ALsizei frameSizeFromFmt() const noexcept { return bytesFromFmt() * channelsFromFmt(); }
DEF_NEWDEL(ALCdevice)
};
// Frequency was requested by the app or config file
#define DEVICE_FREQUENCY_REQUEST (1u<<1)
// Channel configuration was requested by the config file
#define DEVICE_CHANNELS_REQUEST (1u<<2)
// Sample type was requested by the config file
#define DEVICE_SAMPLE_TYPE_REQUEST (1u<<3)
// Specifies if the DSP is paused at user request
#define DEVICE_PAUSED (1u<<30)
// Specifies if the device is currently running
#define DEVICE_RUNNING (1u<<31)
/* Nanosecond resolution for the device clock time. */
#define DEVICE_CLOCK_RES U64(1000000000)
/* Must be less than 15 characters (16 including terminating null) for
* compatibility with pthread_setname_np limitations. */
#define MIXER_THREAD_NAME "alsoft-mixer"
#define RECORD_THREAD_NAME "alsoft-record"
enum {
/* End event thread processing. */
EventType_KillThread = 0,
/* User event types. */
EventType_SourceStateChange = 1<<0,
EventType_BufferCompleted = 1<<1,
EventType_Error = 1<<2,
EventType_Performance = 1<<3,
EventType_Deprecated = 1<<4,
EventType_Disconnected = 1<<5,
/* Internal events. */
EventType_ReleaseEffectState = 65536,
};
struct AsyncEvent {
unsigned int EnumType{0u};
union {
char dummy;
struct {
ALuint id;
ALenum state;
} srcstate;
struct {
ALuint id;
ALsizei count;
} bufcomp;
struct {
ALenum type;
ALuint id;
ALuint param;
ALchar msg[1008];
} user;
EffectState *mEffectState;
} u{};
AsyncEvent() noexcept = default;
constexpr AsyncEvent(unsigned int type) noexcept : EnumType{type} { }
};
void AllocateVoices(ALCcontext *context, ALsizei num_voices, ALsizei old_sends);
extern ALint RTPrioLevel;
void SetRTPriority(void);
void SetDefaultChannelOrder(ALCdevice *device);
void SetDefaultWFXChannelOrder(ALCdevice *device);
const ALCchar *DevFmtTypeString(DevFmtType type) noexcept;
const ALCchar *DevFmtChannelsString(DevFmtChannels chans) noexcept;
inline ALint GetChannelIndex(const Channel (&names)[MAX_OUTPUT_CHANNELS], Channel chan)
{
auto iter = std::find(std::begin(names), std::end(names), chan);
if(iter == std::end(names)) return -1;
return static_cast<ALint>(std::distance(std::begin(names), iter));
}
/**
* GetChannelIdxByName
*
* Returns the index for the given channel name (e.g. FrontCenter), or -1 if it
* doesn't exist.
*/
inline ALint GetChannelIdxByName(const RealMixParams &real, Channel chan)
{ return GetChannelIndex(real.ChannelName, chan); }
void StartEventThrd(ALCcontext *ctx);
void StopEventThrd(ALCcontext *ctx);
al::vector<std::string> SearchDataFiles(const char *match, const char *subdir);
#endif
|