aboutsummaryrefslogtreecommitdiffstats
path: root/OpenAL32/Include/alu.h
blob: 94e3dc171284c26e8fee202c198d862b213e5be6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#ifndef _ALU_H_
#define _ALU_H_

#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"

#include <limits.h>
#include <math.h>
#ifdef HAVE_FLOAT_H
#include <float.h>
#endif
#ifdef HAVE_IEEEFP_H
#include <ieeefp.h>
#endif


#define F_PI    (3.14159265358979323846f)  /* pi */
#define F_PI_2  (1.57079632679489661923f)  /* pi/2 */

#ifndef HAVE_POWF
static __inline float powf(float x, float y)
{ return (float)pow(x, y); }
#endif

#ifndef HAVE_SQRTF
static __inline float sqrtf(float x)
{ return (float)sqrt(x); }
#endif

#ifndef HAVE_COSF
static __inline float cosf(float x)
{ return (float)cos(x); }
#endif

#ifndef HAVE_SINF
static __inline float sinf(float x)
{ return (float)sin(x); }
#endif

#ifndef HAVE_ACOSF
static __inline float acosf(float x)
{ return (float)acos(x); }
#endif

#ifndef HAVE_ASINF
static __inline float asinf(float x)
{ return (float)asin(x); }
#endif

#ifndef HAVE_ATANF
static __inline float atanf(float x)
{ return (float)atan(x); }
#endif

#ifndef HAVE_ATAN2F
static __inline float atan2f(float x, float y)
{ return (float)atan2(x, y); }
#endif

#ifndef HAVE_FABSF
static __inline float fabsf(float x)
{ return (float)fabs(x); }
#endif

#ifndef HAVE_LOG10F
static __inline float log10f(float x)
{ return (float)log10(x); }
#endif

#ifndef HAVE_FLOORF
static __inline float floorf(float x)
{ return (float)floor(x); }
#endif

#ifdef __cplusplus
extern "C" {
#endif

struct ALsource;
struct ALbuffer;
struct DirectParams;
struct SendParams;

typedef ALvoid (*DryMixerFunc)(struct ALsource *self, ALCdevice *Device,
                               struct DirectParams *params,
                               const ALfloat *RESTRICT data, ALuint srcchan,
                               ALuint OutPos, ALuint SamplesToDo,
                               ALuint BufferSize);
typedef ALvoid (*WetMixerFunc)(struct SendParams *params,
                               const ALfloat *RESTRICT data, ALuint srcchan,
                               ALuint OutPos, ALuint SamplesToDo,
                               ALuint BufferSize);

enum Resampler {
    PointResampler,
    LinearResampler,
    CubicResampler,

    ResamplerMax,
};

enum Channel {
    FrontLeft = 0,
    FrontRight,
    FrontCenter,
    LFE,
    BackLeft,
    BackRight,
    BackCenter,
    SideLeft,
    SideRight,

    MaxChannels,
};

enum DistanceModel {
    InverseDistanceClamped  = AL_INVERSE_DISTANCE_CLAMPED,
    LinearDistanceClamped   = AL_LINEAR_DISTANCE_CLAMPED,
    ExponentDistanceClamped = AL_EXPONENT_DISTANCE_CLAMPED,
    InverseDistance  = AL_INVERSE_DISTANCE,
    LinearDistance   = AL_LINEAR_DISTANCE,
    ExponentDistance = AL_EXPONENT_DISTANCE,
    DisableDistance  = AL_NONE,

    DefaultDistanceModel = InverseDistanceClamped
};


/* Size for temporary storage of buffer data, in ALfloats. Larger values need
 * more stack, while smaller values may need more iterations. The value needs
 * to be a sensible size, however, as it constrains the max stepping value used
 * for mixing, as well as the maximum number of samples per mixing iteration.
 * The mixer requires being able to do two samplings per mixing loop. A 16KB
 * buffer can hold 512 sample frames for a 7.1 float buffer. With the cubic
 * resampler (which requires 3 padding sample frames), this limits the maximum
 * step to about 508. This means that buffer_freq*source_pitch cannot exceed
 * device_freq*508 for an 8-channel 32-bit buffer.
 */
#ifndef BUFFERSIZE
#define BUFFERSIZE 4096
#endif

#define FRACTIONBITS (14)
#define FRACTIONONE  (1<<FRACTIONBITS)
#define FRACTIONMASK (FRACTIONONE-1)


static __inline ALfloat minf(ALfloat a, ALfloat b)
{ return ((a > b) ? b : a); }
static __inline ALfloat maxf(ALfloat a, ALfloat b)
{ return ((a > b) ? a : b); }
static __inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max)
{ return minf(max, maxf(min, val)); }

static __inline ALuint minu(ALuint a, ALuint b)
{ return ((a > b) ? b : a); }
static __inline ALuint maxu(ALuint a, ALuint b)
{ return ((a > b) ? a : b); }
static __inline ALuint clampu(ALuint val, ALuint min, ALuint max)
{ return minu(max, maxu(min, val)); }

static __inline ALint mini(ALint a, ALint b)
{ return ((a > b) ? b : a); }
static __inline ALint maxi(ALint a, ALint b)
{ return ((a > b) ? a : b); }
static __inline ALint clampi(ALint val, ALint min, ALint max)
{ return mini(max, maxi(min, val)); }

static __inline ALint64 mini64(ALint64 a, ALint64 b)
{ return ((a > b) ? b : a); }
static __inline ALint64 maxi64(ALint64 a, ALint64 b)
{ return ((a > b) ? a : b); }
static __inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max)
{ return mini64(max, maxi64(min, val)); }

static __inline ALuint64 minu64(ALuint64 a, ALuint64 b)
{ return ((a > b) ? b : a); }
static __inline ALuint64 maxu64(ALuint64 a, ALuint64 b)
{ return ((a > b) ? a : b); }
static __inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max)
{ return minu64(max, maxu64(min, val)); }


static __inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu)
{
    return val1 + (val2-val1)*mu;
}
static __inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat mu)
{
    ALfloat mu2 = mu*mu;
    ALfloat a0 = -0.5f*val0 +  1.5f*val1 + -1.5f*val2 +  0.5f*val3;
    ALfloat a1 =       val0 + -2.5f*val1 +  2.0f*val2 + -0.5f*val3;
    ALfloat a2 = -0.5f*val0              +  0.5f*val2;
    ALfloat a3 =                    val1;

    return a0*mu*mu2 + a1*mu2 + a2*mu + a3;
}


static __inline int SetMixerFPUMode(void)
{
#if defined(_FPU_GETCW) && defined(_FPU_SETCW) && (defined(__i386__) || defined(__x86_64__))
    fpu_control_t fpuState, newState;
    _FPU_GETCW(fpuState);
    newState = fpuState&~(_FPU_EXTENDED|_FPU_DOUBLE|_FPU_SINGLE |
                          _FPU_RC_NEAREST|_FPU_RC_DOWN|_FPU_RC_UP|_FPU_RC_ZERO);
    newState |= _FPU_SINGLE | _FPU_RC_ZERO;
    _FPU_SETCW(newState);
#else
    int fpuState;
#if defined(HAVE__CONTROLFP)
    fpuState = _controlfp(0, 0);
    (void)_controlfp(_RC_CHOP|_PC_24, _MCW_RC|_MCW_PC);
#elif defined(HAVE_FESETROUND)
    fpuState = fegetround();
#ifdef FE_TOWARDZERO
    fesetround(FE_TOWARDZERO);
#endif
#endif
#endif
    return fpuState;
}

static __inline void RestoreFPUMode(int state)
{
#if defined(_FPU_GETCW) && defined(_FPU_SETCW) && (defined(__i386__) || defined(__x86_64__))
    fpu_control_t fpuState = state;
    _FPU_SETCW(fpuState);
#elif defined(HAVE__CONTROLFP)
    _controlfp(state, _MCW_RC|_MCW_PC);
#elif defined(HAVE_FESETROUND)
    fesetround(state);
#endif
}


static __inline void aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
{
    outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
    outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
    outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
}

static __inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
{
    return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
           inVector1[2]*inVector2[2];
}

static __inline void aluNormalize(ALfloat *inVector)
{
    ALfloat lengthsqr = aluDotproduct(inVector, inVector);
    if(lengthsqr > 0.0f)
    {
        ALfloat inv_length = 1.0f/sqrtf(lengthsqr);
        inVector[0] *= inv_length;
        inVector[1] *= inv_length;
        inVector[2] *= inv_length;
    }
}


ALvoid aluInitPanning(ALCdevice *Device);

ALvoid ComputeAngleGains(const ALCdevice *device, ALfloat angle, ALfloat hwidth, ALfloat ingain, ALfloat *gains);

ALvoid CalcSourceParams(struct ALsource *ALSource, const ALCcontext *ALContext);
ALvoid CalcNonAttnSourceParams(struct ALsource *ALSource, const ALCcontext *ALContext);

DryMixerFunc SelectDirectMixer(void);
DryMixerFunc SelectHrtfMixer(void);
WetMixerFunc SelectSendMixer(void);

ALvoid MixSource(struct ALsource *Source, ALCdevice *Device, ALuint SamplesToDo);

ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size);
ALvoid aluHandleDisconnect(ALCdevice *device);

extern ALfloat ConeScale;
extern ALfloat ZScale;

#ifdef __cplusplus
}
#endif

#endif