aboutsummaryrefslogtreecommitdiffstats
path: root/OpenAL32/Include/alu.h
blob: a309c4abd1b7fc579d26bf7e98004b3a6492353f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#ifndef _ALU_H_
#define _ALU_H_

#include <limits.h>
#include <math.h>
#ifdef HAVE_FLOAT_H
#include <float.h>
#endif
#ifdef HAVE_IEEEFP_H
#include <ieeefp.h>
#endif

#include "alMain.h"
#include "alBuffer.h"
#include "alFilter.h"

#include "hrtf.h"
#include "align.h"
#include "math_defs.h"


#define MAX_PITCH  (255)

/* Maximum number of buffer samples before the current pos needed for resampling. */
#define MAX_PRE_SAMPLES 12

/* Maximum number of buffer samples after the current pos needed for resampling. */
#define MAX_POST_SAMPLES 12


#ifdef __cplusplus
extern "C" {
#endif

struct ALsource;
struct ALvoice;


/* The number of distinct scale and phase intervals within the filter table. */
#define BSINC_SCALE_BITS  4
#define BSINC_SCALE_COUNT (1<<BSINC_SCALE_BITS)
#define BSINC_PHASE_BITS  4
#define BSINC_PHASE_COUNT (1<<BSINC_PHASE_BITS)

/* Interpolator state.  Kind of a misnomer since the interpolator itself is
 * stateless.  This just keeps it from having to recompute scale-related
 * mappings for every sample.
 */
typedef struct BsincState {
    ALfloat sf; /* Scale interpolation factor. */
    ALuint m;   /* Coefficient count. */
    ALint l;    /* Left coefficient offset. */
    struct {
        const ALfloat *filter;   /* Filter coefficients. */
        const ALfloat *scDelta;  /* Scale deltas. */
        const ALfloat *phDelta;  /* Phase deltas. */
        const ALfloat *spDelta;  /* Scale-phase deltas. */
    } coeffs[BSINC_PHASE_COUNT];
} BsincState;


typedef union aluVector {
    alignas(16) ALfloat v[4];
} aluVector;

inline void aluVectorSet(aluVector *vector, ALfloat x, ALfloat y, ALfloat z, ALfloat w)
{
    vector->v[0] = x;
    vector->v[1] = y;
    vector->v[2] = z;
    vector->v[3] = w;
}


typedef union aluMatrixf {
    alignas(16) ALfloat m[4][4];
} aluMatrixf;

inline void aluMatrixfSetRow(aluMatrixf *matrix, ALuint row,
                             ALfloat m0, ALfloat m1, ALfloat m2, ALfloat m3)
{
    matrix->m[row][0] = m0;
    matrix->m[row][1] = m1;
    matrix->m[row][2] = m2;
    matrix->m[row][3] = m3;
}

inline void aluMatrixfSet(aluMatrixf *matrix, ALfloat m00, ALfloat m01, ALfloat m02, ALfloat m03,
                                              ALfloat m10, ALfloat m11, ALfloat m12, ALfloat m13,
                                              ALfloat m20, ALfloat m21, ALfloat m22, ALfloat m23,
                                              ALfloat m30, ALfloat m31, ALfloat m32, ALfloat m33)
{
    aluMatrixfSetRow(matrix, 0, m00, m01, m02, m03);
    aluMatrixfSetRow(matrix, 1, m10, m11, m12, m13);
    aluMatrixfSetRow(matrix, 2, m20, m21, m22, m23);
    aluMatrixfSetRow(matrix, 3, m30, m31, m32, m33);
}


typedef union aluMatrixd {
    alignas(16) ALdouble m[4][4];
} aluMatrixd;

inline void aluMatrixdSetRow(aluMatrixd *matrix, ALuint row,
                             ALdouble m0, ALdouble m1, ALdouble m2, ALdouble m3)
{
    matrix->m[row][0] = m0;
    matrix->m[row][1] = m1;
    matrix->m[row][2] = m2;
    matrix->m[row][3] = m3;
}

inline void aluMatrixdSet(aluMatrixd *matrix, ALdouble m00, ALdouble m01, ALdouble m02, ALdouble m03,
                                              ALdouble m10, ALdouble m11, ALdouble m12, ALdouble m13,
                                              ALdouble m20, ALdouble m21, ALdouble m22, ALdouble m23,
                                              ALdouble m30, ALdouble m31, ALdouble m32, ALdouble m33)
{
    aluMatrixdSetRow(matrix, 0, m00, m01, m02, m03);
    aluMatrixdSetRow(matrix, 1, m10, m11, m12, m13);
    aluMatrixdSetRow(matrix, 2, m20, m21, m22, m23);
    aluMatrixdSetRow(matrix, 3, m30, m31, m32, m33);
}


enum ActiveFilters {
    AF_None = 0,
    AF_LowPass = 1,
    AF_HighPass = 2,
    AF_BandPass = AF_LowPass | AF_HighPass
};


typedef struct MixGains {
    ALfloat Current;
    ALfloat Step;
    ALfloat Target;
} MixGains;


typedef struct DirectParams {
    ALfloat (*OutBuffer)[BUFFERSIZE];
    ALuint OutChannels;

    /* If not 'moving', gain/coefficients are set directly without fading. */
    ALboolean Moving;
    /* Stepping counter for gain/coefficient fading. */
    ALuint Counter;
    /* Last direction (relative to listener) and gain of a moving source. */
    aluVector LastDir;
    ALfloat LastGain;

    struct {
        enum ActiveFilters ActiveType;
        ALfilterState LowPass;
        ALfilterState HighPass;
    } Filters[MAX_INPUT_CHANNELS];

    struct {
        HrtfParams Params;
        HrtfState State;
    } Hrtf[MAX_INPUT_CHANNELS];
    MixGains Gains[MAX_INPUT_CHANNELS][MAX_OUTPUT_CHANNELS];
} DirectParams;

typedef struct SendParams {
    ALfloat (*OutBuffer)[BUFFERSIZE];

    ALboolean Moving;
    ALuint Counter;

    struct {
        enum ActiveFilters ActiveType;
        ALfilterState LowPass;
        ALfilterState HighPass;
    } Filters[MAX_INPUT_CHANNELS];

    /* Gain control, which applies to each input channel to a single (mono)
     * output buffer. */
    MixGains Gains[MAX_INPUT_CHANNELS];
} SendParams;


typedef const ALfloat* (*ResamplerFunc)(const BsincState *state,
    const ALfloat *src, ALuint frac, ALuint increment, ALfloat *restrict dst, ALuint dstlen
);

typedef void (*MixerFunc)(const ALfloat *data, ALuint OutChans,
                          ALfloat (*restrict OutBuffer)[BUFFERSIZE], struct MixGains *Gains,
                          ALuint Counter, ALuint OutPos, ALuint BufferSize);
typedef void (*HrtfMixerFunc)(ALfloat (*restrict OutBuffer)[BUFFERSIZE], const ALfloat *data,
                              ALuint Counter, ALuint Offset, ALuint OutPos,
                              const ALuint IrSize, const HrtfParams *hrtfparams,
                              HrtfState *hrtfstate, ALuint BufferSize);


#define GAIN_SILENCE_THRESHOLD  (0.00001f) /* -100dB */

#define SPEEDOFSOUNDMETRESPERSEC  (343.3f)
#define AIRABSORBGAINHF           (0.99426f) /* -0.05dB */

#define FRACTIONBITS (12)
#define FRACTIONONE  (1<<FRACTIONBITS)
#define FRACTIONMASK (FRACTIONONE-1)


inline ALfloat minf(ALfloat a, ALfloat b)
{ return ((a > b) ? b : a); }
inline ALfloat maxf(ALfloat a, ALfloat b)
{ return ((a > b) ? a : b); }
inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max)
{ return minf(max, maxf(min, val)); }

inline ALdouble mind(ALdouble a, ALdouble b)
{ return ((a > b) ? b : a); }
inline ALdouble maxd(ALdouble a, ALdouble b)
{ return ((a > b) ? a : b); }
inline ALdouble clampd(ALdouble val, ALdouble min, ALdouble max)
{ return mind(max, maxd(min, val)); }

inline ALuint minu(ALuint a, ALuint b)
{ return ((a > b) ? b : a); }
inline ALuint maxu(ALuint a, ALuint b)
{ return ((a > b) ? a : b); }
inline ALuint clampu(ALuint val, ALuint min, ALuint max)
{ return minu(max, maxu(min, val)); }

inline ALint mini(ALint a, ALint b)
{ return ((a > b) ? b : a); }
inline ALint maxi(ALint a, ALint b)
{ return ((a > b) ? a : b); }
inline ALint clampi(ALint val, ALint min, ALint max)
{ return mini(max, maxi(min, val)); }

inline ALint64 mini64(ALint64 a, ALint64 b)
{ return ((a > b) ? b : a); }
inline ALint64 maxi64(ALint64 a, ALint64 b)
{ return ((a > b) ? a : b); }
inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max)
{ return mini64(max, maxi64(min, val)); }

inline ALuint64 minu64(ALuint64 a, ALuint64 b)
{ return ((a > b) ? b : a); }
inline ALuint64 maxu64(ALuint64 a, ALuint64 b)
{ return ((a > b) ? a : b); }
inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max)
{ return minu64(max, maxu64(min, val)); }


union ResamplerCoeffs {
    ALfloat FIR4[FRACTIONONE][4];
    ALfloat FIR8[FRACTIONONE][8];
};
extern alignas(16) union ResamplerCoeffs ResampleCoeffs;

extern alignas(16) const ALfloat bsincTab[18840];


inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu)
{
    return val1 + (val2-val1)*mu;
}
inline ALfloat resample_fir4(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALuint frac)
{
    const ALfloat *k = ResampleCoeffs.FIR4[frac];
    return k[0]*val0 + k[1]*val1 + k[2]*val2 + k[3]*val3;
}
inline ALfloat resample_fir8(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat val4, ALfloat val5, ALfloat val6, ALfloat val7, ALuint frac)
{
    const ALfloat *k = ResampleCoeffs.FIR8[frac];
    return k[0]*val0 + k[1]*val1 + k[2]*val2 + k[3]*val3 +
           k[4]*val4 + k[5]*val5 + k[6]*val6 + k[7]*val7;
}


void aluInitMixer(void);

ALvoid aluInitPanning(ALCdevice *Device);

/**
 * ComputeDirectionalGains
 *
 * Sets channel gains based on a direction. The direction must be a 3-component
 * vector no longer than 1 unit.
 */
void ComputeDirectionalGains(const ALCdevice *device, const ALfloat dir[3], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]);

/**
 * ComputeAngleGains
 *
 * Sets channel gains based on angle and elevation. The angle and elevation
 * parameters are in radians, going right and up respectively.
 */
void ComputeAngleGains(const ALCdevice *device, ALfloat angle, ALfloat elevation, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]);

/**
 * ComputeAmbientGains
 *
 * Sets channel gains for ambient, omni-directional sounds.
 */
void ComputeAmbientGains(const ALCdevice *device, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]);

/**
 * ComputeBFormatGains
 *
 * Sets channel gains for a given (first-order) B-Format channel. The matrix is
 * a 1x4 'slice' of the rotation matrix for a given channel used to orient the
 * coefficients.
 */
void ComputeBFormatGains(const ALCdevice *device, const ALfloat mtx[4], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]);


ALvoid UpdateContextSources(ALCcontext *context);

ALvoid CalcSourceParams(struct ALvoice *voice, const struct ALsource *source, const ALCcontext *ALContext);
ALvoid CalcNonAttnSourceParams(struct ALvoice *voice, const struct ALsource *source, const ALCcontext *ALContext);

ALvoid MixSource(struct ALvoice *voice, struct ALsource *source, ALCdevice *Device, ALuint SamplesToDo);

ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size);
/* Caller must lock the device. */
ALvoid aluHandleDisconnect(ALCdevice *device);

extern ALfloat ConeScale;
extern ALfloat ZScale;

#ifdef __cplusplus
}
#endif

#endif