aboutsummaryrefslogtreecommitdiffstats
path: root/alc/alu.h
blob: 020223817680a91977aebf59a0022ffbfefcfd99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#ifndef ALU_H
#define ALU_H

#include <array>
#include <cmath>
#include <cstddef>
#include <type_traits>

#include "AL/al.h"

#include "alcmain.h"
#include "alspan.h"

struct ALCcontext;
struct ALeffectslot;


#define MAX_PITCH  10
#define MAX_SENDS  6


using MixerFunc = void(*)(const al::span<const float> InSamples,
    const al::span<FloatBufferLine> OutBuffer, float *CurrentGains, const float *TargetGains,
    const size_t Counter, const size_t OutPos);

extern MixerFunc MixSamples;


constexpr float GainMixMax{1000.0f}; /* +60dB */

constexpr float GainSilenceThreshold{0.00001f}; /* -100dB */

constexpr float SpeedOfSoundMetersPerSec{343.3f};
constexpr float AirAbsorbGainHF{0.99426f}; /* -0.05dB */

/** Target gain for the reverb decay feedback reaching the decay time. */
constexpr float ReverbDecayGain{0.001f}; /* -60 dB */


constexpr int MixerFracBits{12};
constexpr int MixerFracOne{1 << MixerFracBits};
constexpr int MixerFracMask{MixerFracOne - 1};


inline float lerp(float val1, float val2, float mu) noexcept
{ return val1 + (val2-val1)*mu; }
inline float cubic(float val1, float val2, float val3, float val4, float mu) noexcept
{
    const float mu2{mu*mu}, mu3{mu2*mu};
    const float a0{-0.5f*mu3 +       mu2 + -0.5f*mu};
    const float a1{ 1.5f*mu3 + -2.5f*mu2            + 1.0f};
    const float a2{-1.5f*mu3 +  2.0f*mu2 +  0.5f*mu};
    const float a3{ 0.5f*mu3 + -0.5f*mu2};
    return val1*a0 + val2*a1 + val3*a2 + val4*a3;
}


enum HrtfRequestMode {
    Hrtf_Default = 0,
    Hrtf_Enable = 1,
    Hrtf_Disable = 2,
};

void aluInit(void);

void aluInitMixer(void);

/* aluInitRenderer
 *
 * Set up the appropriate panning method and mixing method given the device
 * properties.
 */
void aluInitRenderer(ALCdevice *device, int hrtf_id, HrtfRequestMode hrtf_appreq,
    HrtfRequestMode hrtf_userreq);

void aluInitEffectPanning(ALeffectslot *slot, ALCcontext *context);

/**
 * Calculates ambisonic encoder coefficients using the X, Y, and Z direction
 * components, which must represent a normalized (unit length) vector, and the
 * spread is the angular width of the sound (0...tau).
 *
 * NOTE: The components use ambisonic coordinates. As a result:
 *
 * Ambisonic Y = OpenAL -X
 * Ambisonic Z = OpenAL Y
 * Ambisonic X = OpenAL -Z
 *
 * The components are ordered such that OpenAL's X, Y, and Z are the first,
 * second, and third parameters respectively -- simply negate X and Z.
 */
std::array<float,MAX_AMBI_CHANNELS> CalcAmbiCoeffs(const float y, const float z, const float x,
    const float spread);

/**
 * CalcDirectionCoeffs
 *
 * Calculates ambisonic coefficients based on an OpenAL direction vector. The
 * vector must be normalized (unit length), and the spread is the angular width
 * of the sound (0...tau).
 */
inline std::array<float,MAX_AMBI_CHANNELS> CalcDirectionCoeffs(const float (&dir)[3],
    const float spread)
{
    /* Convert from OpenAL coords to Ambisonics. */
    return CalcAmbiCoeffs(-dir[0], dir[1], -dir[2], spread);
}

/**
 * CalcAngleCoeffs
 *
 * Calculates ambisonic coefficients based on azimuth and elevation. The
 * azimuth and elevation parameters are in radians, going right and up
 * respectively.
 */
inline std::array<float,MAX_AMBI_CHANNELS> CalcAngleCoeffs(const float azimuth,
    const float elevation, const float spread)
{
    const float x{-std::sin(azimuth) * std::cos(elevation)};
    const float y{ std::sin(elevation)};
    const float z{ std::cos(azimuth) * std::cos(elevation)};

    return CalcAmbiCoeffs(x, y, z, spread);
}


/**
 * ComputePanGains
 *
 * Computes panning gains using the given channel decoder coefficients and the
 * pre-calculated direction or angle coefficients. For B-Format sources, the
 * coeffs are a 'slice' of a transform matrix for the input channel, used to
 * scale and orient the sound samples.
 */
void ComputePanGains(const MixParams *mix, const float*RESTRICT coeffs, const float ingain,
    const al::span<float,MAX_OUTPUT_CHANNELS> gains);


/** Helper to set an identity/pass-through panning for ambisonic mixing (3D input). */
template<typename T, typename I, typename F>
auto SetAmbiPanIdentity(T iter, I count, F func) -> std::enable_if_t<std::is_integral<I>::value>
{
    if(count < 1) return;

    std::array<float,MAX_AMBI_CHANNELS> coeffs{{1.0f}};
    func(*iter, coeffs);
    ++iter;
    for(I i{1};i < count;++i,++iter)
    {
        coeffs[i-1] = 0.0f;
        coeffs[i  ] = 1.0f;
        func(*iter, coeffs);
    }
}


extern const float ConeScale;
extern const float ZScale;

#endif