aboutsummaryrefslogtreecommitdiffstats
path: root/alc/effects/pshifter.cpp
blob: 18be0e38eea716fb0bdf485ee6f75f0a352afd45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
/**
 * OpenAL cross platform audio library
 * Copyright (C) 2018 by Raul Herraiz.
 * This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 *  License along with this library; if not, write to the
 *  Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 * Or go to http://www.gnu.org/copyleft/lgpl.html
 */

#include "config.h"

#ifdef HAVE_SSE_INTRINSICS
#include <emmintrin.h>
#endif

#include <cmath>
#include <cstdlib>
#include <array>
#include <complex>
#include <algorithm>

#include "al/auxeffectslot.h"
#include "alcmain.h"
#include "alcomplex.h"
#include "alcontext.h"
#include "alnumeric.h"
#include "alu.h"


namespace {

using complex_d = std::complex<double>;

#define STFT_SIZE      1024
#define STFT_HALF_SIZE (STFT_SIZE>>1)
#define OVERSAMP       (1<<2)

#define STFT_STEP    (STFT_SIZE / OVERSAMP)
#define FIFO_LATENCY (STFT_STEP * (OVERSAMP-1))

/* Define a Hann window, used to filter the STFT input and output. */
std::array<double,STFT_SIZE> InitHannWindow()
{
    std::array<double,STFT_SIZE> ret;
    /* Create lookup table of the Hann window for the desired size, i.e. STFT_SIZE */
    for(size_t i{0};i < STFT_SIZE>>1;i++)
    {
        constexpr double scale{al::MathDefs<double>::Pi() / double{STFT_SIZE}};
        const double val{std::sin(static_cast<double>(i+1) * scale)};
        ret[i] = ret[STFT_SIZE-1-i] = val * val;
    }
    return ret;
}
alignas(16) const std::array<double,STFT_SIZE> HannWindow = InitHannWindow();


struct FrequencyBin {
    double Amplitude;
    double Frequency;
};


struct PshifterState final : public EffectState {
    /* Effect parameters */
    size_t mCount;
    ALuint mPitchShiftI;
    double mPitchShift;
    double mFreqPerBin;

    /* Effects buffers */
    std::array<double,STFT_SIZE> mFIFO;
    std::array<double,STFT_HALF_SIZE+1> mLastPhase;
    std::array<double,STFT_HALF_SIZE+1> mSumPhase;
    std::array<double,STFT_SIZE> mOutputAccum;

    std::array<complex_d,STFT_SIZE> mFftBuffer;

    std::array<FrequencyBin,STFT_HALF_SIZE+1> mAnalysisBuffer;
    std::array<FrequencyBin,STFT_HALF_SIZE+1> mSynthesisBuffer;

    alignas(16) FloatBufferLine mBufferOut;

    /* Effect gains for each output channel */
    float mCurrentGains[MAX_OUTPUT_CHANNELS];
    float mTargetGains[MAX_OUTPUT_CHANNELS];


    void deviceUpdate(const ALCdevice *device) override;
    void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override;
    void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override;

    DEF_NEWDEL(PshifterState)
};

void PshifterState::deviceUpdate(const ALCdevice *device)
{
    /* (Re-)initializing parameters and clear the buffers. */
    mCount       = FIFO_LATENCY;
    mPitchShiftI = FRACTIONONE;
    mPitchShift  = 1.0;
    mFreqPerBin  = device->Frequency / double{STFT_SIZE};

    std::fill(mFIFO.begin(),            mFIFO.end(),            0.0);
    std::fill(mLastPhase.begin(),       mLastPhase.end(),       0.0);
    std::fill(mSumPhase.begin(),        mSumPhase.end(),        0.0);
    std::fill(mOutputAccum.begin(),     mOutputAccum.end(),     0.0);
    std::fill(mFftBuffer.begin(),       mFftBuffer.end(),       complex_d{});
    std::fill(mAnalysisBuffer.begin(),  mAnalysisBuffer.end(),  FrequencyBin{});
    std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{});

    std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f);
    std::fill(std::begin(mTargetGains),  std::end(mTargetGains),  0.0f);
}

void PshifterState::update(const ALCcontext*, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target)
{
    const int tune{props->Pshifter.CoarseTune*100 + props->Pshifter.FineTune};
    const float pitch{std::pow(2.0f, static_cast<float>(tune) / 1200.0f)};
    mPitchShiftI = fastf2u(pitch*FRACTIONONE);
    mPitchShift  = mPitchShiftI * double{1.0/FRACTIONONE};

    const auto coeffs = CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f);

    mOutTarget = target.Main->Buffer;
    ComputePanGains(target.Main, coeffs.data(), slot->Params.Gain, mTargetGains);
}

void PshifterState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
    /* Pitch shifter engine based on the work of Stephan Bernsee.
     * http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/
     */

    static constexpr double expected{al::MathDefs<double>::Tau() / OVERSAMP};
    const double freq_per_bin{mFreqPerBin};

    for(size_t base{0u};base < samplesToDo;)
    {
        const size_t todo{minz(STFT_SIZE-mCount, samplesToDo-base)};

        /* Retrieve the output samples from the FIFO and fill in the new input
         * samples.
         */
        auto fifo_iter = mFIFO.begin() + mCount;
        std::transform(fifo_iter, fifo_iter+todo, mBufferOut.begin()+base,
            [](double d) noexcept -> float { return static_cast<float>(d); });

        std::copy_n(samplesIn[0].begin()+base, todo, fifo_iter);
        mCount += todo;
        base += todo;

        /* Check whether FIFO buffer is filled with new samples. */
        if(mCount < STFT_SIZE) break;
        mCount = FIFO_LATENCY;

        /* Time-domain signal windowing, store in FftBuffer, and apply a
         * forward FFT to get the frequency-domain signal.
         */
        for(size_t k{0u};k < STFT_SIZE;k++)
            mFftBuffer[k] = mFIFO[k] * HannWindow[k];
        complex_fft(mFftBuffer, -1.0);

        /* Analyze the obtained data. Since the real FFT is symmetric, only
         * STFT_HALF_SIZE+1 samples are needed.
         */
        for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
        {
            const double amplitude{std::abs(mFftBuffer[k])};
            const double phase{std::arg(mFftBuffer[k])};

            /* Compute phase difference and subtract expected phase difference */
            double tmp{(phase - mLastPhase[k]) - static_cast<double>(k)*expected};

            /* Map delta phase into +/- Pi interval */
            int qpd{double2int(tmp / al::MathDefs<double>::Pi())};
            tmp -= al::MathDefs<double>::Pi() * (qpd + (qpd%2));

            /* Get deviation from bin frequency from the +/- Pi interval */
            tmp /= expected;

            /* Compute the k-th partials' true frequency, twice the amplitude
             * for maintain the gain (because half of bins are used) and store
             * amplitude and true frequency in analysis buffer.
             */
            mAnalysisBuffer[k].Amplitude = 2.0 * amplitude;
            mAnalysisBuffer[k].Frequency = (static_cast<double>(k) + tmp) * freq_per_bin;

            /* Store the actual phase[k] for the next frame. */
            mLastPhase[k] = phase;
        }

        /* Shift the frequency bins according to the pitch adjustment,
         * accumulating the amplitudes of overlapping frequency bins.
         */
        std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{});
        for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
        {
            const size_t j{(k*mPitchShiftI + (FRACTIONONE>>1)) >> FRACTIONBITS};
            if(j >= STFT_HALF_SIZE+1) break;

            mSynthesisBuffer[j].Amplitude += mAnalysisBuffer[k].Amplitude;
            mSynthesisBuffer[j].Frequency  = mAnalysisBuffer[k].Frequency * mPitchShift;
        }

        /* Reconstruct the frequency-domain signal from the adjusted frequency
         * bins.
         */
        for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
        {
            /* Compute bin deviation from scaled freq */
            const double tmp{mSynthesisBuffer[k].Frequency / freq_per_bin};

            /* Calculate actual delta phase and accumulate it to get bin phase */
            mSumPhase[k] += tmp * expected;

            mFftBuffer[k] = std::polar(mSynthesisBuffer[k].Amplitude, mSumPhase[k]);
        }
        /* Clear negative frequencies to recontruct the time-domain signal. */
        std::fill(mFftBuffer.begin()+STFT_HALF_SIZE+1, mFftBuffer.end(), complex_d{});

        /* Apply an inverse FFT to get the time-domain siganl, and accumulate
         * for the output with windowing.
         */
        complex_fft(mFftBuffer, 1.0);
        for(size_t k{0u};k < STFT_SIZE;k++)
            mOutputAccum[k] += HannWindow[k]*mFftBuffer[k].real() * (2.0/STFT_HALF_SIZE/OVERSAMP);

        /* Shift FIFO and accumulator. */
        fifo_iter = std::copy(mFIFO.begin()+STFT_STEP, mFIFO.end(), mFIFO.begin());
        std::copy_n(mOutputAccum.begin(), STFT_STEP, fifo_iter);
        auto accum_iter = std::copy(mOutputAccum.begin()+STFT_STEP, mOutputAccum.end(),
            mOutputAccum.begin());
        std::fill(accum_iter, mOutputAccum.end(), 0.0);
    }

    /* Now, mix the processed sound data to the output. */
    MixSamples({mBufferOut.data(), samplesToDo}, samplesOut, mCurrentGains, mTargetGains,
        maxz(samplesToDo, 512), 0);
}


void Pshifter_setParamf(EffectProps*, ALenum param, float)
{ throw effect_exception{AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param}; }
void Pshifter_setParamfv(EffectProps*, ALenum param, const float*)
{
    throw effect_exception{AL_INVALID_ENUM, "Invalid pitch shifter float-vector property 0x%04x",
        param};
}

void Pshifter_setParami(EffectProps *props, ALenum param, int val)
{
    switch(param)
    {
    case AL_PITCH_SHIFTER_COARSE_TUNE:
        if(!(val >= AL_PITCH_SHIFTER_MIN_COARSE_TUNE && val <= AL_PITCH_SHIFTER_MAX_COARSE_TUNE))
            throw effect_exception{AL_INVALID_VALUE, "Pitch shifter coarse tune out of range"};
        props->Pshifter.CoarseTune = val;
        break;

    case AL_PITCH_SHIFTER_FINE_TUNE:
        if(!(val >= AL_PITCH_SHIFTER_MIN_FINE_TUNE && val <= AL_PITCH_SHIFTER_MAX_FINE_TUNE))
            throw effect_exception{AL_INVALID_VALUE, "Pitch shifter fine tune out of range"};
        props->Pshifter.FineTune = val;
        break;

    default:
        throw effect_exception{AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x",
            param};
    }
}
void Pshifter_setParamiv(EffectProps *props, ALenum param, const int *vals)
{ Pshifter_setParami(props, param, vals[0]); }

void Pshifter_getParami(const EffectProps *props, ALenum param, int *val)
{
    switch(param)
    {
    case AL_PITCH_SHIFTER_COARSE_TUNE:
        *val = props->Pshifter.CoarseTune;
        break;
    case AL_PITCH_SHIFTER_FINE_TUNE:
        *val = props->Pshifter.FineTune;
        break;

    default:
        throw effect_exception{AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x",
            param};
    }
}
void Pshifter_getParamiv(const EffectProps *props, ALenum param, int *vals)
{ Pshifter_getParami(props, param, vals); }

void Pshifter_getParamf(const EffectProps*, ALenum param, float*)
{ throw effect_exception{AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param}; }
void Pshifter_getParamfv(const EffectProps*, ALenum param, float*)
{
    throw effect_exception{AL_INVALID_ENUM, "Invalid pitch shifter float vector-property 0x%04x",
        param};
}

DEFINE_ALEFFECT_VTABLE(Pshifter);


struct PshifterStateFactory final : public EffectStateFactory {
    EffectState *create() override;
    EffectProps getDefaultProps() const noexcept override;
    const EffectVtable *getEffectVtable() const noexcept override { return &Pshifter_vtable; }
};

EffectState *PshifterStateFactory::create()
{ return new PshifterState{}; }

EffectProps PshifterStateFactory::getDefaultProps() const noexcept
{
    EffectProps props{};
    props.Pshifter.CoarseTune = AL_PITCH_SHIFTER_DEFAULT_COARSE_TUNE;
    props.Pshifter.FineTune   = AL_PITCH_SHIFTER_DEFAULT_FINE_TUNE;
    return props;
}

} // namespace

EffectStateFactory *PshifterStateFactory_getFactory()
{
    static PshifterStateFactory PshifterFactory{};
    return &PshifterFactory;
}