aboutsummaryrefslogtreecommitdiffstats
path: root/alc/effects/vmorpher.cpp
blob: c3790e30fed80e20ab03fea2edc80255969353a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/**
 * This file is part of the OpenAL Soft cross platform audio library
 *
 * Copyright (C) 2019 by Anis A. Hireche
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * * Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 *
 * * Redistributions in binary form must reproduce the above copyright notice,
 *   this list of conditions and the following disclaimer in the documentation
 *   and/or other materials provided with the distribution.
 *
 * * Neither the name of Spherical-Harmonic-Transform nor the names of its
 *   contributors may be used to endorse or promote products derived from
 *   this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"

#include <algorithm>
#include <array>
#include <cstdlib>
#include <functional>
#include <iterator>

#include "almalloc.h"
#include "alnumeric.h"
#include "alspan.h"
#include "core/ambidefs.h"
#include "core/bufferline.h"
#include "core/context.h"
#include "core/devformat.h"
#include "core/device.h"
#include "core/mixer.h"
#include "effects/base.h"
#include "effectslot.h"
#include "intrusive_ptr.h"
#include "math_defs.h"


namespace {

using uint = unsigned int;

#define MAX_UPDATE_SAMPLES 256
#define NUM_FORMANTS       4
#define NUM_FILTERS        2
#define Q_FACTOR           5.0f

#define VOWEL_A_INDEX      0
#define VOWEL_B_INDEX      1

#define WAVEFORM_FRACBITS  24
#define WAVEFORM_FRACONE   (1<<WAVEFORM_FRACBITS)
#define WAVEFORM_FRACMASK  (WAVEFORM_FRACONE-1)

inline float Sin(uint index)
{
    constexpr float scale{al::MathDefs<float>::Tau() / WAVEFORM_FRACONE};
    return std::sin(static_cast<float>(index) * scale)*0.5f + 0.5f;
}

inline float Saw(uint index)
{ return static_cast<float>(index) / float{WAVEFORM_FRACONE}; }

inline float Triangle(uint index)
{ return std::fabs(static_cast<float>(index)*(2.0f/WAVEFORM_FRACONE) - 1.0f); }

inline float Half(uint) { return 0.5f; }

template<float (&func)(uint)>
void Oscillate(float *RESTRICT dst, uint index, const uint step, size_t todo)
{
    for(size_t i{0u};i < todo;i++)
    {
        index += step;
        index &= WAVEFORM_FRACMASK;
        dst[i] = func(index);
    }
}

struct FormantFilter
{
    float mCoeff{0.0f};
    float mGain{1.0f};
    float mS1{0.0f};
    float mS2{0.0f};

    FormantFilter() = default;
    FormantFilter(float f0norm, float gain)
      : mCoeff{std::tan(al::MathDefs<float>::Pi() * f0norm)}, mGain{gain}
    { }

    inline void process(const float *samplesIn, float *samplesOut, const size_t numInput)
    {
        /* A state variable filter from a topology-preserving transform.
         * Based on a talk given by Ivan Cohen: https://www.youtube.com/watch?v=esjHXGPyrhg
         */
        const float g{mCoeff};
        const float gain{mGain};
        const float h{1.0f / (1.0f + (g/Q_FACTOR) + (g*g))};
        float s1{mS1};
        float s2{mS2};

        for(size_t i{0u};i < numInput;i++)
        {
            const float H{(samplesIn[i] - (1.0f/Q_FACTOR + g)*s1 - s2)*h};
            const float B{g*H + s1};
            const float L{g*B + s2};

            s1 = g*H + B;
            s2 = g*B + L;

            // Apply peak and accumulate samples.
            samplesOut[i] += B * gain;
        }
        mS1 = s1;
        mS2 = s2;
    }

    inline void clear()
    {
        mS1 = 0.0f;
        mS2 = 0.0f;
    }
};


struct VmorpherState final : public EffectState {
    struct {
        /* Effect parameters */
        FormantFilter Formants[NUM_FILTERS][NUM_FORMANTS];

        /* Effect gains for each channel */
        float CurrentGains[MAX_OUTPUT_CHANNELS]{};
        float TargetGains[MAX_OUTPUT_CHANNELS]{};
    } mChans[MaxAmbiChannels];

    void (*mGetSamples)(float*RESTRICT, uint, const uint, size_t){};

    uint mIndex{0};
    uint mStep{1};

    /* Effects buffers */
    alignas(16) float mSampleBufferA[MAX_UPDATE_SAMPLES]{};
    alignas(16) float mSampleBufferB[MAX_UPDATE_SAMPLES]{};
    alignas(16) float mLfo[MAX_UPDATE_SAMPLES]{};

    void deviceUpdate(const DeviceBase *device, const Buffer &buffer) override;
    void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
        const EffectTarget target) override;
    void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
        const al::span<FloatBufferLine> samplesOut) override;

    static std::array<FormantFilter,4> getFiltersByPhoneme(VMorpherPhenome phoneme,
        float frequency, float pitch);

    DEF_NEWDEL(VmorpherState)
};

std::array<FormantFilter,4> VmorpherState::getFiltersByPhoneme(VMorpherPhenome phoneme,
    float frequency, float pitch)
{
    /* Using soprano formant set of values to
     * better match mid-range frequency space.
     *
     * See: https://www.classes.cs.uchicago.edu/archive/1999/spring/CS295/Computing_Resources/Csound/CsManual3.48b1.HTML/Appendices/table3.html
     */
    switch(phoneme)
    {
    case VMorpherPhenome::A:
        return {{
            {( 800 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f,   0 / 20.0f); */
            {(1150 * pitch) / frequency, 0.501187f}, /* std::pow(10.0f,  -6 / 20.0f); */
            {(2900 * pitch) / frequency, 0.025118f}, /* std::pow(10.0f, -32 / 20.0f); */
            {(3900 * pitch) / frequency, 0.100000f}  /* std::pow(10.0f, -20 / 20.0f); */
        }};
    case VMorpherPhenome::E:
        return {{
            {( 350 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f,   0 / 20.0f); */
            {(2000 * pitch) / frequency, 0.100000f}, /* std::pow(10.0f, -20 / 20.0f); */
            {(2800 * pitch) / frequency, 0.177827f}, /* std::pow(10.0f, -15 / 20.0f); */
            {(3600 * pitch) / frequency, 0.009999f}  /* std::pow(10.0f, -40 / 20.0f); */
        }};
    case VMorpherPhenome::I:
        return {{
            {( 270 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f,   0 / 20.0f); */
            {(2140 * pitch) / frequency, 0.251188f}, /* std::pow(10.0f, -12 / 20.0f); */
            {(2950 * pitch) / frequency, 0.050118f}, /* std::pow(10.0f, -26 / 20.0f); */
            {(3900 * pitch) / frequency, 0.050118f}  /* std::pow(10.0f, -26 / 20.0f); */
        }};
    case VMorpherPhenome::O:
        return {{
            {( 450 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f,   0 / 20.0f); */
            {( 800 * pitch) / frequency, 0.281838f}, /* std::pow(10.0f, -11 / 20.0f); */
            {(2830 * pitch) / frequency, 0.079432f}, /* std::pow(10.0f, -22 / 20.0f); */
            {(3800 * pitch) / frequency, 0.079432f}  /* std::pow(10.0f, -22 / 20.0f); */
        }};
    case VMorpherPhenome::U:
        return {{
            {( 325 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f,   0 / 20.0f); */
            {( 700 * pitch) / frequency, 0.158489f}, /* std::pow(10.0f, -16 / 20.0f); */
            {(2700 * pitch) / frequency, 0.017782f}, /* std::pow(10.0f, -35 / 20.0f); */
            {(3800 * pitch) / frequency, 0.009999f}  /* std::pow(10.0f, -40 / 20.0f); */
        }};
    default:
        break;
    }
    return {};
}


void VmorpherState::deviceUpdate(const DeviceBase*, const Buffer&)
{
    for(auto &e : mChans)
    {
        std::for_each(std::begin(e.Formants[VOWEL_A_INDEX]), std::end(e.Formants[VOWEL_A_INDEX]),
            std::mem_fn(&FormantFilter::clear));
        std::for_each(std::begin(e.Formants[VOWEL_B_INDEX]), std::end(e.Formants[VOWEL_B_INDEX]),
            std::mem_fn(&FormantFilter::clear));
        std::fill(std::begin(e.CurrentGains), std::end(e.CurrentGains), 0.0f);
    }
}

void VmorpherState::update(const ContextBase *context, const EffectSlot *slot,
    const EffectProps *props, const EffectTarget target)
{
    const DeviceBase *device{context->mDevice};
    const float frequency{static_cast<float>(device->Frequency)};
    const float step{props->Vmorpher.Rate / frequency};
    mStep = fastf2u(clampf(step*WAVEFORM_FRACONE, 0.0f, float{WAVEFORM_FRACONE-1}));

    if(mStep == 0)
        mGetSamples = Oscillate<Half>;
    else if(props->Vmorpher.Waveform == VMorpherWaveform::Sinusoid)
        mGetSamples = Oscillate<Sin>;
    else if(props->Vmorpher.Waveform == VMorpherWaveform::Triangle)
        mGetSamples = Oscillate<Triangle>;
    else /*if(props->Vmorpher.Waveform == VMorpherWaveform::Sawtooth)*/
        mGetSamples = Oscillate<Saw>;

    const float pitchA{std::pow(2.0f,
        static_cast<float>(props->Vmorpher.PhonemeACoarseTuning) / 12.0f)};
    const float pitchB{std::pow(2.0f,
        static_cast<float>(props->Vmorpher.PhonemeBCoarseTuning) / 12.0f)};

    auto vowelA = getFiltersByPhoneme(props->Vmorpher.PhonemeA, frequency, pitchA);
    auto vowelB = getFiltersByPhoneme(props->Vmorpher.PhonemeB, frequency, pitchB);

    /* Copy the filter coefficients to the input channels. */
    for(size_t i{0u};i < slot->Wet.Buffer.size();++i)
    {
        std::copy(vowelA.begin(), vowelA.end(), std::begin(mChans[i].Formants[VOWEL_A_INDEX]));
        std::copy(vowelB.begin(), vowelB.end(), std::begin(mChans[i].Formants[VOWEL_B_INDEX]));
    }

    mOutTarget = target.Main->Buffer;
    auto set_gains = [slot,target](auto &chan, al::span<const float,MaxAmbiChannels> coeffs)
    { ComputePanGains(target.Main, coeffs.data(), slot->Gain, chan.TargetGains); };
    SetAmbiPanIdentity(std::begin(mChans), slot->Wet.Buffer.size(), set_gains);
}

void VmorpherState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
    /* Following the EFX specification for a conformant implementation which describes
     * the effect as a pair of 4-band formant filters blended together using an LFO.
     */
    for(size_t base{0u};base < samplesToDo;)
    {
        const size_t td{minz(MAX_UPDATE_SAMPLES, samplesToDo-base)};

        mGetSamples(mLfo, mIndex, mStep, td);
        mIndex += static_cast<uint>(mStep * td);
        mIndex &= WAVEFORM_FRACMASK;

        auto chandata = std::begin(mChans);
        for(const auto &input : samplesIn)
        {
            auto& vowelA = chandata->Formants[VOWEL_A_INDEX];
            auto& vowelB = chandata->Formants[VOWEL_B_INDEX];

            /* Process first vowel. */
            std::fill_n(std::begin(mSampleBufferA), td, 0.0f);
            vowelA[0].process(&input[base], mSampleBufferA, td);
            vowelA[1].process(&input[base], mSampleBufferA, td);
            vowelA[2].process(&input[base], mSampleBufferA, td);
            vowelA[3].process(&input[base], mSampleBufferA, td);

            /* Process second vowel. */
            std::fill_n(std::begin(mSampleBufferB), td, 0.0f);
            vowelB[0].process(&input[base], mSampleBufferB, td);
            vowelB[1].process(&input[base], mSampleBufferB, td);
            vowelB[2].process(&input[base], mSampleBufferB, td);
            vowelB[3].process(&input[base], mSampleBufferB, td);

            alignas(16) float blended[MAX_UPDATE_SAMPLES];
            for(size_t i{0u};i < td;i++)
                blended[i] = lerp(mSampleBufferA[i], mSampleBufferB[i], mLfo[i]);

            /* Now, mix the processed sound data to the output. */
            MixSamples({blended, td}, samplesOut, chandata->CurrentGains, chandata->TargetGains,
                samplesToDo-base, base);
            ++chandata;
        }

        base += td;
    }
}


struct VmorpherStateFactory final : public EffectStateFactory {
    al::intrusive_ptr<EffectState> create() override
    { return al::intrusive_ptr<EffectState>{new VmorpherState{}}; }
};

} // namespace

EffectStateFactory *VmorpherStateFactory_getFactory()
{
    static VmorpherStateFactory VmorpherFactory{};
    return &VmorpherFactory;
}