aboutsummaryrefslogtreecommitdiffstats
path: root/alc/filters/biquad.cpp
blob: 6a3cef64144bad8daf14133a741c73dfdc6bc745 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

#include "config.h"

#include "biquad.h"

#include <algorithm>
#include <cassert>
#include <cmath>

#include "opthelpers.h"


template<typename Real>
void BiquadFilterR<Real>::setParams(BiquadType type, Real gain, Real f0norm, Real rcpQ)
{
    // Limit gain to -100dB
    assert(gain > 0.00001f);

    const Real w0{al::MathDefs<Real>::Tau() * f0norm};
    const Real sin_w0{std::sin(w0)};
    const Real cos_w0{std::cos(w0)};
    const Real alpha{sin_w0/2.0f * rcpQ};

    Real sqrtgain_alpha_2;
    Real a[3]{ 1.0f, 0.0f, 0.0f };
    Real b[3]{ 1.0f, 0.0f, 0.0f };

    /* Calculate filter coefficients depending on filter type */
    switch(type)
    {
        case BiquadType::HighShelf:
            sqrtgain_alpha_2 = 2.0f * std::sqrt(gain) * alpha;
            b[0] =       gain*((gain+1.0f) + (gain-1.0f)*cos_w0 + sqrtgain_alpha_2);
            b[1] = -2.0f*gain*((gain-1.0f) + (gain+1.0f)*cos_w0                   );
            b[2] =       gain*((gain+1.0f) + (gain-1.0f)*cos_w0 - sqrtgain_alpha_2);
            a[0] =             (gain+1.0f) - (gain-1.0f)*cos_w0 + sqrtgain_alpha_2;
            a[1] =  2.0f*     ((gain-1.0f) - (gain+1.0f)*cos_w0                   );
            a[2] =             (gain+1.0f) - (gain-1.0f)*cos_w0 - sqrtgain_alpha_2;
            break;
        case BiquadType::LowShelf:
            sqrtgain_alpha_2 = 2.0f * std::sqrt(gain) * alpha;
            b[0] =       gain*((gain+1.0f) - (gain-1.0f)*cos_w0 + sqrtgain_alpha_2);
            b[1] =  2.0f*gain*((gain-1.0f) - (gain+1.0f)*cos_w0                   );
            b[2] =       gain*((gain+1.0f) - (gain-1.0f)*cos_w0 - sqrtgain_alpha_2);
            a[0] =             (gain+1.0f) + (gain-1.0f)*cos_w0 + sqrtgain_alpha_2;
            a[1] = -2.0f*     ((gain-1.0f) + (gain+1.0f)*cos_w0                   );
            a[2] =             (gain+1.0f) + (gain-1.0f)*cos_w0 - sqrtgain_alpha_2;
            break;
        case BiquadType::Peaking:
            gain = std::sqrt(gain);
            b[0] =  1.0f + alpha * gain;
            b[1] = -2.0f * cos_w0;
            b[2] =  1.0f - alpha * gain;
            a[0] =  1.0f + alpha / gain;
            a[1] = -2.0f * cos_w0;
            a[2] =  1.0f - alpha / gain;
            break;

        case BiquadType::LowPass:
            b[0] = (1.0f - cos_w0) / 2.0f;
            b[1] =  1.0f - cos_w0;
            b[2] = (1.0f - cos_w0) / 2.0f;
            a[0] =  1.0f + alpha;
            a[1] = -2.0f * cos_w0;
            a[2] =  1.0f - alpha;
            break;
        case BiquadType::HighPass:
            b[0] =  (1.0f + cos_w0) / 2.0f;
            b[1] = -(1.0f + cos_w0);
            b[2] =  (1.0f + cos_w0) / 2.0f;
            a[0] =   1.0f + alpha;
            a[1] =  -2.0f * cos_w0;
            a[2] =   1.0f - alpha;
            break;
        case BiquadType::BandPass:
            b[0] =  alpha;
            b[1] =  0.0f;
            b[2] = -alpha;
            a[0] =  1.0f + alpha;
            a[1] = -2.0f * cos_w0;
            a[2] =  1.0f - alpha;
            break;
    }

    a1 = a[1] / a[0];
    a2 = a[2] / a[0];
    b0 = b[0] / a[0];
    b1 = b[1] / a[0];
    b2 = b[2] / a[0];
}

template<typename Real>
void BiquadFilterR<Real>::process(Real *dst, const Real *src, int numsamples)
{
    ASSUME(numsamples > 0);

    const Real b0{this->b0};
    const Real b1{this->b1};
    const Real b2{this->b2};
    const Real a1{this->a1};
    const Real a2{this->a2};
    Real z1{this->z1};
    Real z2{this->z2};

    /* Processing loop is Transposed Direct Form II. This requires less storage
     * compared to Direct Form I (only two delay components, instead of a four-
     * sample history; the last two inputs and outputs), and works better for
     * floating-point which favors summing similarly-sized values while being
     * less bothered by overflow.
     *
     * See: http://www.earlevel.com/main/2003/02/28/biquads/
     */
    auto proc_sample = [b0,b1,b2,a1,a2,&z1,&z2](Real input) noexcept -> Real
    {
        Real output = input*b0 + z1;
        z1 = input*b1 - output*a1 + z2;
        z2 = input*b2 - output*a2;
        return output;
    };
    std::transform(src, src+numsamples, dst, proc_sample);

    this->z1 = z1;
    this->z2 = z2;
}

template class BiquadFilterR<float>;
template class BiquadFilterR<double>;