1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
#ifndef MIXER_HRTFBASE_H
#define MIXER_HRTFBASE_H
#include <algorithm>
#include "alu.h"
#include "../hrtf.h"
#include "opthelpers.h"
#include "voice.h"
using ApplyCoeffsT = void(&)(float2 *RESTRICT Values, const uint_fast32_t irSize,
const HrirArray &Coeffs, const float left, const float right);
template<ApplyCoeffsT ApplyCoeffs>
inline void MixHrtfBase(const float *InSamples, float2 *RESTRICT AccumSamples, const ALuint IrSize,
const MixHrtfFilter *hrtfparams, const size_t BufferSize)
{
ASSUME(BufferSize > 0);
const HrirArray &Coeffs = *hrtfparams->Coeffs;
const float gainstep{hrtfparams->GainStep};
const float gain{hrtfparams->Gain};
size_t ldelay{HRTF_HISTORY_LENGTH - hrtfparams->Delay[0]};
size_t rdelay{HRTF_HISTORY_LENGTH - hrtfparams->Delay[1]};
float stepcount{0.0f};
for(size_t i{0u};i < BufferSize;++i)
{
const float g{gain + gainstep*stepcount};
const float left{InSamples[ldelay++] * g};
const float right{InSamples[rdelay++] * g};
ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, left, right);
stepcount += 1.0f;
}
}
template<ApplyCoeffsT ApplyCoeffs>
inline void MixHrtfBlendBase(const float *InSamples, float2 *RESTRICT AccumSamples,
const ALuint IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams,
const size_t BufferSize)
{
ASSUME(BufferSize > 0);
const auto &OldCoeffs = oldparams->Coeffs;
const float oldGainStep{oldparams->Gain / static_cast<float>(BufferSize)};
const auto &NewCoeffs = *newparams->Coeffs;
const float newGainStep{newparams->GainStep};
if LIKELY(oldparams->Gain > GAIN_SILENCE_THRESHOLD)
{
size_t ldelay{HRTF_HISTORY_LENGTH - oldparams->Delay[0]};
size_t rdelay{HRTF_HISTORY_LENGTH - oldparams->Delay[1]};
auto stepcount = static_cast<float>(BufferSize);
for(size_t i{0u};i < BufferSize;++i)
{
const float g{oldGainStep*stepcount};
const float left{InSamples[ldelay++] * g};
const float right{InSamples[rdelay++] * g};
ApplyCoeffs(AccumSamples+i, IrSize, OldCoeffs, left, right);
stepcount -= 1.0f;
}
}
if LIKELY(newGainStep*static_cast<float>(BufferSize) > GAIN_SILENCE_THRESHOLD)
{
size_t ldelay{HRTF_HISTORY_LENGTH - newparams->Delay[0]};
size_t rdelay{HRTF_HISTORY_LENGTH - newparams->Delay[1]};
float stepcount{0.0f};
for(size_t i{0u};i < BufferSize;++i)
{
const float g{newGainStep*stepcount};
const float left{InSamples[ldelay++] * g};
const float right{InSamples[rdelay++] * g};
ApplyCoeffs(AccumSamples+i, IrSize, NewCoeffs, left, right);
stepcount += 1.0f;
}
}
}
template<ApplyCoeffsT ApplyCoeffs>
inline void MixDirectHrtfBase(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
const al::span<const FloatBufferLine> InSamples, float2 *RESTRICT AccumSamples,
DirectHrtfState *State, const size_t BufferSize)
{
ASSUME(BufferSize > 0);
/* Add the existing signal directly to the accumulation buffer, unfiltered,
* and with a delay to align with the input delay.
*/
for(size_t i{0};i < BufferSize;++i)
{
AccumSamples[HRTF_DIRECT_DELAY+i][0] += LeftOut[i];
AccumSamples[HRTF_DIRECT_DELAY+i][1] += RightOut[i];
}
const uint_fast32_t IrSize{State->mIrSize};
auto chan_iter = State->mChannels.begin();
for(const FloatBufferLine &input : InSamples)
{
/* For dual-band processing, the signal needs extra scaling applied to
* the high frequency response. The band-splitter alone creates a
* frequency-dependent phase shift, which is not ideal. To counteract
* it, combine it with a backwards phase shift.
*/
/* Load the input signal backwards, into a temp buffer with delay
* padding. The delay serves to reduce the error caused by the IIR
* filter's phase shift on a partial input.
*/
al::span<float> tempbuf{al::assume_aligned<16>(State->mTemp.data()),
HRTF_DIRECT_DELAY+BufferSize};
auto tmpiter = std::reverse_copy(input.begin(), input.begin()+BufferSize, tempbuf.begin());
std::copy(chan_iter->mDelay.cbegin(), chan_iter->mDelay.cend(), tmpiter);
/* Save the unfiltered newest input samples for next time. */
std::copy_n(tempbuf.begin(), HRTF_DIRECT_DELAY, chan_iter->mDelay.begin());
/* Apply the all-pass on the reversed signal and reverse the resulting
* sample array. This produces the forward response with a backwards
* phase shift (+n degrees becomes -n degrees).
*/
chan_iter->mSplitter.applyAllpass(tempbuf);
tempbuf = tempbuf.subspan<HRTF_DIRECT_DELAY>();
std::reverse(tempbuf.begin(), tempbuf.end());
/* Now apply the HF scale with the band-splitter. This applies the
* forward phase shift, which cancels out with the backwards phase
* shift to get the original phase on the scaled signal.
*/
chan_iter->mSplitter.processHfScale(tempbuf, chan_iter->mHfScale);
/* Now apply the HRIR coefficients to this channel. */
const auto &Coeffs = chan_iter->mCoeffs;
for(size_t i{0u};i < BufferSize;++i)
{
const float insample{tempbuf[i]};
ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, insample, insample);
}
++chan_iter;
}
for(size_t i{0u};i < BufferSize;++i)
LeftOut[i] = AccumSamples[i][0];
for(size_t i{0u};i < BufferSize;++i)
RightOut[i] = AccumSamples[i][1];
/* Copy the new in-progress accumulation values to the front and clear the
* following samples for the next mix.
*/
auto accum_iter = std::copy_n(AccumSamples+BufferSize, HRIR_LENGTH+HRTF_DIRECT_DELAY,
AccumSamples);
std::fill_n(accum_iter, BufferSize, float2{});
}
#endif /* MIXER_HRTFBASE_H */
|