aboutsummaryrefslogtreecommitdiffstats
path: root/alc/mixer/mixer_sse.cpp
blob: 65eb0deeb2e6d08e9604777c6544ee5b80c21ef4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#include "config.h"

#include <xmmintrin.h>

#include <limits>

#include "AL/al.h"
#include "AL/alc.h"
#include "alcmain.h"
#include "alu.h"

#include "defs.h"
#include "hrtfbase.h"


template<>
const ALfloat *Resample_<BSincTag,SSETag>(const InterpState *state, const ALfloat *RESTRICT src,
    ALuint frac, ALuint increment, const al::span<float> dst)
{
    const ALfloat *const filter{state->bsinc.filter};
    const __m128 sf4{_mm_set1_ps(state->bsinc.sf)};
    const ptrdiff_t m{state->bsinc.m};

    ASSUME(m > 0);

    src -= state->bsinc.l;
    for(float &out_sample : dst)
    {
        // Calculate the phase index and factor.
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
        const ALuint pi{frac >> FRAC_PHASE_BITDIFF};
        const ALfloat pf{static_cast<float>(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) *
            (1.0f/(1<<FRAC_PHASE_BITDIFF))};
#undef FRAC_PHASE_BITDIFF

        // Apply the scale and phase interpolated filter.
        __m128 r4{_mm_setzero_ps()};
        {
            const __m128 pf4{_mm_set1_ps(pf)};
            const float *fil{filter + m*pi*4};
            const float *scd{fil + m};
            const float *phd{scd + m};
            const float *spd{phd + m};
            ptrdiff_t td{m >> 2};
            size_t j{0u};

#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
            do {
                /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
                const __m128 f4 = MLA4(
                    MLA4(_mm_load_ps(fil), sf4, _mm_load_ps(scd)),
                    pf4, MLA4(_mm_load_ps(phd), sf4, _mm_load_ps(spd)));
                fil += 4; scd += 4; phd += 4; spd += 4;
                /* r += f*src */
                r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j]));
                j += 4;
            } while(--td);
#undef MLA4
        }
        r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
        r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
        out_sample = _mm_cvtss_f32(r4);

        frac += increment;
        src  += frac>>FRACTIONBITS;
        frac &= FRACTIONMASK;
    }
    return dst.begin();
}


static inline void ApplyCoeffs(size_t Offset, float2 *RESTRICT Values, const ALuint IrSize,
    const HrirArray &Coeffs, const ALfloat left, const ALfloat right)
{
    const __m128 lrlr{_mm_setr_ps(left, right, left, right)};

    ASSUME(IrSize >= 4);

    if((Offset&1))
    {
        __m128 imp0, imp1;
        __m128 coeffs{_mm_load_ps(&Coeffs[0][0])};
        __m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(&Values[0][0]))};
        imp0 = _mm_mul_ps(lrlr, coeffs);
        vals = _mm_add_ps(imp0, vals);
        _mm_storel_pi(reinterpret_cast<__m64*>(&Values[0][0]), vals);
        ALuint i{1};
        for(;i < IrSize-1;i += 2)
        {
            coeffs = _mm_load_ps(&Coeffs[i+1][0]);
            vals = _mm_load_ps(&Values[i][0]);
            imp1 = _mm_mul_ps(lrlr, coeffs);
            imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
            vals = _mm_add_ps(imp0, vals);
            _mm_store_ps(&Values[i][0], vals);
            imp0 = imp1;
        }
        vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(&Values[i][0]));
        imp0 = _mm_movehl_ps(imp0, imp0);
        vals = _mm_add_ps(imp0, vals);
        _mm_storel_pi(reinterpret_cast<__m64*>(&Values[i][0]), vals);
    }
    else
    {
        for(ALuint i{0};i < IrSize;i += 2)
        {
            __m128 coeffs{_mm_load_ps(&Coeffs[i][0])};
            __m128 vals{_mm_load_ps(&Values[i][0])};
            vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs));
            _mm_store_ps(&Values[i][0], vals);
        }
    }
}

template<>
void MixHrtf_<SSETag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
    const ALfloat *InSamples, float2 *AccumSamples, const size_t OutPos, const ALuint IrSize,
    MixHrtfFilter *hrtfparams, const size_t BufferSize)
{
    MixHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize,
        hrtfparams, BufferSize);
}

template<>
void MixHrtfBlend_<SSETag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
    const ALfloat *InSamples, float2 *AccumSamples, const size_t OutPos, const ALuint IrSize,
    const HrtfFilter *oldparams, MixHrtfFilter *newparams, const size_t BufferSize)
{
    MixHrtfBlendBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize,
        oldparams, newparams, BufferSize);
}

template<>
void MixDirectHrtf_<SSETag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
    const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, DirectHrtfState *State,
    const size_t BufferSize)
{
    MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize);
}


template<>
void Mix_<SSETag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
    float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
{
    const ALfloat delta{(Counter > 0) ? 1.0f / static_cast<ALfloat>(Counter) : 0.0f};
    const bool reached_target{InSamples.size() >= Counter};
    const auto min_end = reached_target ? InSamples.begin() + Counter : InSamples.end();
    const auto aligned_end = minz(static_cast<uintptr_t>(min_end-InSamples.begin()+3) & ~3u,
        InSamples.size()) + InSamples.begin();
    for(FloatBufferLine &output : OutBuffer)
    {
        ALfloat *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
        ALfloat gain{*CurrentGains};
        const ALfloat diff{*TargetGains - gain};

        auto in_iter = InSamples.begin();
        if(std::fabs(diff) > std::numeric_limits<float>::epsilon())
        {
            const ALfloat step{diff * delta};
            ALfloat step_count{0.0f};
            /* Mix with applying gain steps in aligned multiples of 4. */
            if(ptrdiff_t todo{(min_end-in_iter) >> 2})
            {
                const __m128 four4{_mm_set1_ps(4.0f)};
                const __m128 step4{_mm_set1_ps(step)};
                const __m128 gain4{_mm_set1_ps(gain)};
                __m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)};
                do {
                    const __m128 val4{_mm_load_ps(in_iter)};
                    __m128 dry4{_mm_load_ps(dst)};
#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
                    /* dry += val * (gain + step*step_count) */
                    dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4));
#undef MLA4
                    _mm_store_ps(dst, dry4);
                    step_count4 = _mm_add_ps(step_count4, four4);
                    in_iter += 4; dst += 4;
                } while(--todo);
                /* NOTE: step_count4 now represents the next four counts after
                 * the last four mixed samples, so the lowest element
                 * represents the next step count to apply.
                 */
                step_count = _mm_cvtss_f32(step_count4);
            }
            /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
            while(in_iter != min_end)
            {
                *(dst++) += *(in_iter++) * (gain + step*step_count);
                step_count += 1.0f;
            }
            if(reached_target)
                gain = *TargetGains;
            else
                gain += step*step_count;
            *CurrentGains = gain;

            /* Mix until pos is aligned with 4 or the mix is done. */
            while(in_iter != aligned_end)
                *(dst++) += *(in_iter++) * gain;
        }
        ++CurrentGains;
        ++TargetGains;

        if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
            continue;
        if(ptrdiff_t todo{(InSamples.end()-in_iter) >> 2})
        {
            const __m128 gain4{_mm_set1_ps(gain)};
            do {
                const __m128 val4{_mm_load_ps(in_iter)};
                __m128 dry4{_mm_load_ps(dst)};
                dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
                _mm_store_ps(dst, dry4);
                in_iter += 4; dst += 4;
            } while(--todo);
        }
        while(in_iter != InSamples.end())
            *(dst++) += *(in_iter++) * gain;
    }
}

template<>
void MixRow_<SSETag>(const al::span<float> OutBuffer, const al::span<const float> Gains,
    const float *InSamples, const size_t InStride)
{
    for(const float gain : Gains)
    {
        const float *RESTRICT src{InSamples};
        InSamples += InStride;

        if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
            continue;

        auto out_iter = OutBuffer.begin();
        if(size_t todo{OutBuffer.size() >> 2})
        {
            const __m128 gain4 = _mm_set1_ps(gain);
            do {
                const __m128 val4{_mm_load_ps(src)};
                __m128 dry4{_mm_load_ps(out_iter)};
                dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
                _mm_store_ps(out_iter, dry4);
                out_iter += 4; src += 4;
            } while(--todo);
        }
        std::transform(out_iter, OutBuffer.end(), src, out_iter,
            [gain](const ALfloat cur, const ALfloat src) -> ALfloat { return cur + src*gain; });
    }
}