1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
|
/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <algorithm>
#include <array>
#include <atomic>
#include <cassert>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <memory>
#include <new>
#include <string>
#include <utility>
#include "AL/al.h"
#include "AL/alc.h"
#include "al/buffer.h"
#include "al/event.h"
#include "al/source.h"
#include "alcmain.h"
#include "albyte.h"
#include "alconfig.h"
#include "alcontext.h"
#include "alnumeric.h"
#include "aloptional.h"
#include "alspan.h"
#include "alstring.h"
#include "alu.h"
#include "cpu_caps.h"
#include "devformat.h"
#include "filters/biquad.h"
#include "filters/nfc.h"
#include "filters/splitter.h"
#include "hrtf.h"
#include "inprogext.h"
#include "logging.h"
#include "mixer/defs.h"
#include "opthelpers.h"
#include "ringbuffer.h"
#include "threads.h"
#include "vector.h"
static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE,
"MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!");
/* BSinc24 requires up to 23 extra samples before the current position, and 24 after. */
static_assert(MAX_RESAMPLE_PADDING >= 24, "MAX_RESAMPLE_PADDING must be at least 24!");
Resampler ResamplerDefault = LinearResampler;
MixerFunc MixSamples = Mix_<CTag>;
RowMixerFunc MixRowSamples = MixRow_<CTag>;
namespace {
HrtfMixerFunc MixHrtfSamples = MixHrtf_<CTag>;
HrtfMixerBlendFunc MixHrtfBlendSamples = MixHrtfBlend_<CTag>;
inline MixerFunc SelectMixer()
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Mix_<NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return Mix_<SSETag>;
#endif
return Mix_<CTag>;
}
inline RowMixerFunc SelectRowMixer()
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return MixRow_<NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return MixRow_<SSETag>;
#endif
return MixRow_<CTag>;
}
inline HrtfMixerFunc SelectHrtfMixer()
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return MixHrtf_<NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return MixHrtf_<SSETag>;
#endif
return MixHrtf_<CTag>;
}
inline HrtfMixerBlendFunc SelectHrtfBlendMixer()
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return MixHrtfBlend_<NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return MixHrtfBlend_<SSETag>;
#endif
return MixHrtfBlend_<CTag>;
}
} // namespace
ResamplerFunc SelectResampler(Resampler resampler)
{
switch(resampler)
{
case PointResampler:
return Resample_<PointTag,CTag>;
case LinearResampler:
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_<LerpTag,NEONTag>;
#endif
#ifdef HAVE_SSE4_1
if((CPUCapFlags&CPU_CAP_SSE4_1))
return Resample_<LerpTag,SSE4Tag>;
#endif
#ifdef HAVE_SSE2
if((CPUCapFlags&CPU_CAP_SSE2))
return Resample_<LerpTag,SSE2Tag>;
#endif
return Resample_<LerpTag,CTag>;
case FIR4Resampler:
return Resample_<CubicTag,CTag>;
case BSinc12Resampler:
case BSinc24Resampler:
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_<BSincTag,NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return Resample_<BSincTag,SSETag>;
#endif
return Resample_<BSincTag,CTag>;
}
return Resample_<PointTag,CTag>;
}
void aluInitMixer()
{
if(auto resopt = ConfigValueStr(nullptr, nullptr, "resampler"))
{
struct ResamplerEntry {
const char name[12];
const Resampler resampler;
};
constexpr ResamplerEntry ResamplerList[]{
{ "none", PointResampler },
{ "point", PointResampler },
{ "cubic", FIR4Resampler },
{ "bsinc12", BSinc12Resampler },
{ "bsinc24", BSinc24Resampler },
};
const char *str{resopt->c_str()};
if(al::strcasecmp(str, "bsinc") == 0)
{
WARN("Resampler option \"%s\" is deprecated, using bsinc12\n", str);
str = "bsinc12";
}
else if(al::strcasecmp(str, "sinc4") == 0 || al::strcasecmp(str, "sinc8") == 0)
{
WARN("Resampler option \"%s\" is deprecated, using cubic\n", str);
str = "cubic";
}
auto iter = std::find_if(std::begin(ResamplerList), std::end(ResamplerList),
[str](const ResamplerEntry &entry) -> bool
{ return al::strcasecmp(str, entry.name) == 0; });
if(iter == std::end(ResamplerList))
ERR("Invalid resampler: %s\n", str);
else
ResamplerDefault = iter->resampler;
}
MixHrtfBlendSamples = SelectHrtfBlendMixer();
MixHrtfSamples = SelectHrtfMixer();
MixSamples = SelectMixer();
MixRowSamples = SelectRowMixer();
}
namespace {
/* A quick'n'dirty lookup table to decode a muLaw-encoded byte sample into a
* signed 16-bit sample */
constexpr ALshort muLawDecompressionTable[256] = {
-32124,-31100,-30076,-29052,-28028,-27004,-25980,-24956,
-23932,-22908,-21884,-20860,-19836,-18812,-17788,-16764,
-15996,-15484,-14972,-14460,-13948,-13436,-12924,-12412,
-11900,-11388,-10876,-10364, -9852, -9340, -8828, -8316,
-7932, -7676, -7420, -7164, -6908, -6652, -6396, -6140,
-5884, -5628, -5372, -5116, -4860, -4604, -4348, -4092,
-3900, -3772, -3644, -3516, -3388, -3260, -3132, -3004,
-2876, -2748, -2620, -2492, -2364, -2236, -2108, -1980,
-1884, -1820, -1756, -1692, -1628, -1564, -1500, -1436,
-1372, -1308, -1244, -1180, -1116, -1052, -988, -924,
-876, -844, -812, -780, -748, -716, -684, -652,
-620, -588, -556, -524, -492, -460, -428, -396,
-372, -356, -340, -324, -308, -292, -276, -260,
-244, -228, -212, -196, -180, -164, -148, -132,
-120, -112, -104, -96, -88, -80, -72, -64,
-56, -48, -40, -32, -24, -16, -8, 0,
32124, 31100, 30076, 29052, 28028, 27004, 25980, 24956,
23932, 22908, 21884, 20860, 19836, 18812, 17788, 16764,
15996, 15484, 14972, 14460, 13948, 13436, 12924, 12412,
11900, 11388, 10876, 10364, 9852, 9340, 8828, 8316,
7932, 7676, 7420, 7164, 6908, 6652, 6396, 6140,
5884, 5628, 5372, 5116, 4860, 4604, 4348, 4092,
3900, 3772, 3644, 3516, 3388, 3260, 3132, 3004,
2876, 2748, 2620, 2492, 2364, 2236, 2108, 1980,
1884, 1820, 1756, 1692, 1628, 1564, 1500, 1436,
1372, 1308, 1244, 1180, 1116, 1052, 988, 924,
876, 844, 812, 780, 748, 716, 684, 652,
620, 588, 556, 524, 492, 460, 428, 396,
372, 356, 340, 324, 308, 292, 276, 260,
244, 228, 212, 196, 180, 164, 148, 132,
120, 112, 104, 96, 88, 80, 72, 64,
56, 48, 40, 32, 24, 16, 8, 0
};
/* A quick'n'dirty lookup table to decode an aLaw-encoded byte sample into a
* signed 16-bit sample */
constexpr ALshort aLawDecompressionTable[256] = {
-5504, -5248, -6016, -5760, -4480, -4224, -4992, -4736,
-7552, -7296, -8064, -7808, -6528, -6272, -7040, -6784,
-2752, -2624, -3008, -2880, -2240, -2112, -2496, -2368,
-3776, -3648, -4032, -3904, -3264, -3136, -3520, -3392,
-22016,-20992,-24064,-23040,-17920,-16896,-19968,-18944,
-30208,-29184,-32256,-31232,-26112,-25088,-28160,-27136,
-11008,-10496,-12032,-11520, -8960, -8448, -9984, -9472,
-15104,-14592,-16128,-15616,-13056,-12544,-14080,-13568,
-344, -328, -376, -360, -280, -264, -312, -296,
-472, -456, -504, -488, -408, -392, -440, -424,
-88, -72, -120, -104, -24, -8, -56, -40,
-216, -200, -248, -232, -152, -136, -184, -168,
-1376, -1312, -1504, -1440, -1120, -1056, -1248, -1184,
-1888, -1824, -2016, -1952, -1632, -1568, -1760, -1696,
-688, -656, -752, -720, -560, -528, -624, -592,
-944, -912, -1008, -976, -816, -784, -880, -848,
5504, 5248, 6016, 5760, 4480, 4224, 4992, 4736,
7552, 7296, 8064, 7808, 6528, 6272, 7040, 6784,
2752, 2624, 3008, 2880, 2240, 2112, 2496, 2368,
3776, 3648, 4032, 3904, 3264, 3136, 3520, 3392,
22016, 20992, 24064, 23040, 17920, 16896, 19968, 18944,
30208, 29184, 32256, 31232, 26112, 25088, 28160, 27136,
11008, 10496, 12032, 11520, 8960, 8448, 9984, 9472,
15104, 14592, 16128, 15616, 13056, 12544, 14080, 13568,
344, 328, 376, 360, 280, 264, 312, 296,
472, 456, 504, 488, 408, 392, 440, 424,
88, 72, 120, 104, 24, 8, 56, 40,
216, 200, 248, 232, 152, 136, 184, 168,
1376, 1312, 1504, 1440, 1120, 1056, 1248, 1184,
1888, 1824, 2016, 1952, 1632, 1568, 1760, 1696,
688, 656, 752, 720, 560, 528, 624, 592,
944, 912, 1008, 976, 816, 784, 880, 848
};
template<FmtType T>
struct FmtTypeTraits { };
template<>
struct FmtTypeTraits<FmtUByte> {
using Type = ALubyte;
static constexpr inline float to_float(const Type val) noexcept
{ return val*(1.0f/128.0f) - 128.0f; }
};
template<>
struct FmtTypeTraits<FmtShort> {
using Type = ALshort;
static constexpr inline float to_float(const Type val) noexcept { return val*(1.0f/32768.0f); }
};
template<>
struct FmtTypeTraits<FmtFloat> {
using Type = ALfloat;
static constexpr inline float to_float(const Type val) noexcept { return val; }
};
template<>
struct FmtTypeTraits<FmtDouble> {
using Type = ALdouble;
static constexpr inline float to_float(const Type val) noexcept
{ return static_cast<ALfloat>(val); }
};
template<>
struct FmtTypeTraits<FmtMulaw> {
using Type = ALubyte;
static constexpr inline float to_float(const Type val) noexcept
{ return muLawDecompressionTable[val] * (1.0f/32768.0f); }
};
template<>
struct FmtTypeTraits<FmtAlaw> {
using Type = ALubyte;
static constexpr inline float to_float(const Type val) noexcept
{ return aLawDecompressionTable[val] * (1.0f/32768.0f); }
};
void SendSourceStoppedEvent(ALCcontext *context, ALuint id)
{
RingBuffer *ring{context->mAsyncEvents.get()};
auto evt_vec = ring->getWriteVector();
if(evt_vec.first.len < 1) return;
AsyncEvent *evt{new (evt_vec.first.buf) AsyncEvent{EventType_SourceStateChange}};
evt->u.srcstate.id = id;
evt->u.srcstate.state = AL_STOPPED;
ring->writeAdvance(1);
context->mEventSem.post();
}
const ALfloat *DoFilters(BiquadFilter *lpfilter, BiquadFilter *hpfilter, ALfloat *dst,
const ALfloat *src, const size_t numsamples, int type)
{
switch(type)
{
case AF_None:
lpfilter->clear();
hpfilter->clear();
break;
case AF_LowPass:
lpfilter->process(dst, src, numsamples);
hpfilter->clear();
return dst;
case AF_HighPass:
lpfilter->clear();
hpfilter->process(dst, src, numsamples);
return dst;
case AF_BandPass:
lpfilter->process(dst, src, numsamples);
hpfilter->process(dst, dst, numsamples);
return dst;
}
return src;
}
template<FmtType T>
inline void LoadSampleArray(ALfloat *RESTRICT dst, const al::byte *src, const size_t srcstep,
const size_t samples) noexcept
{
using SampleType = typename FmtTypeTraits<T>::Type;
const SampleType *RESTRICT ssrc{reinterpret_cast<const SampleType*>(src)};
for(size_t i{0u};i < samples;i++)
dst[i] = FmtTypeTraits<T>::to_float(ssrc[i*srcstep]);
}
void LoadSamples(ALfloat *RESTRICT dst, const al::byte *src, const size_t srcstep, FmtType srctype,
const size_t samples) noexcept
{
#define HANDLE_FMT(T) case T: LoadSampleArray<T>(dst, src, srcstep, samples); break
switch(srctype)
{
HANDLE_FMT(FmtUByte);
HANDLE_FMT(FmtShort);
HANDLE_FMT(FmtFloat);
HANDLE_FMT(FmtDouble);
HANDLE_FMT(FmtMulaw);
HANDLE_FMT(FmtAlaw);
}
#undef HANDLE_FMT
}
ALfloat *LoadBufferStatic(ALbufferlistitem *BufferListItem, ALbufferlistitem *&BufferLoopItem,
const size_t NumChannels, const size_t SampleSize, const size_t chan, size_t DataPosInt,
al::span<ALfloat> SrcBuffer)
{
const ALbuffer *Buffer{BufferListItem->mBuffer};
const ALuint LoopStart{Buffer->LoopStart};
const ALuint LoopEnd{Buffer->LoopEnd};
ASSUME(LoopEnd > LoopStart);
/* If current pos is beyond the loop range, do not loop */
if(!BufferLoopItem || DataPosInt >= LoopEnd)
{
BufferLoopItem = nullptr;
/* Load what's left to play from the buffer */
const size_t DataRem{minz(SrcBuffer.size(), Buffer->SampleLen-DataPosInt)};
const al::byte *Data{Buffer->mData.data()};
Data += (DataPosInt*NumChannels + chan)*SampleSize;
LoadSamples(SrcBuffer.data(), Data, NumChannels, Buffer->mFmtType, DataRem);
SrcBuffer = SrcBuffer.subspan(DataRem);
}
else
{
/* Load what's left of this loop iteration */
const size_t DataRem{minz(SrcBuffer.size(), LoopEnd-DataPosInt)};
const al::byte *Data{Buffer->mData.data()};
Data += (DataPosInt*NumChannels + chan)*SampleSize;
LoadSamples(SrcBuffer.data(), Data, NumChannels, Buffer->mFmtType, DataRem);
SrcBuffer = SrcBuffer.subspan(DataRem);
/* Load any repeats of the loop we can to fill the buffer. */
const auto LoopSize = static_cast<size_t>(LoopEnd - LoopStart);
while(!SrcBuffer.empty())
{
const size_t DataSize{minz(SrcBuffer.size(), LoopSize)};
Data = Buffer->mData.data() + (LoopStart*NumChannels + chan)*SampleSize;
LoadSamples(SrcBuffer.data(), Data, NumChannels, Buffer->mFmtType, DataSize);
SrcBuffer = SrcBuffer.subspan(DataSize);
}
}
return SrcBuffer.begin();
}
ALfloat *LoadBufferQueue(ALbufferlistitem *BufferListItem, ALbufferlistitem *BufferLoopItem,
const size_t NumChannels, const size_t SampleSize, const size_t chan, size_t DataPosInt,
al::span<ALfloat> SrcBuffer)
{
/* Crawl the buffer queue to fill in the temp buffer */
while(BufferListItem && !SrcBuffer.empty())
{
ALbuffer *Buffer{BufferListItem->mBuffer};
if(!(Buffer && DataPosInt < Buffer->SampleLen))
{
if(Buffer) DataPosInt -= Buffer->SampleLen;
BufferListItem = BufferListItem->mNext.load(std::memory_order_acquire);
if(!BufferListItem) BufferListItem = BufferLoopItem;
continue;
}
const size_t DataSize{minz(SrcBuffer.size(), Buffer->SampleLen-DataPosInt)};
const al::byte *Data{Buffer->mData.data()};
Data += (DataPosInt*NumChannels + chan)*SampleSize;
LoadSamples(SrcBuffer.data(), Data, NumChannels, Buffer->mFmtType, DataSize);
SrcBuffer = SrcBuffer.subspan(DataSize);
if(SrcBuffer.empty()) break;
DataPosInt = 0;
BufferListItem = BufferListItem->mNext.load(std::memory_order_acquire);
if(!BufferListItem) BufferListItem = BufferLoopItem;
}
return SrcBuffer.begin();
}
void DoHrtfMix(ALvoice::DirectData &Direct, const float TargetGain, DirectParams &parms,
const float *samples, const ALuint DstBufferSize, const ALuint Counter, const ALuint OutPos,
const ALuint IrSize, ALCdevice *Device)
{
const ALuint OutLIdx{GetChannelIdxByName(Device->RealOut, FrontLeft)};
const ALuint OutRIdx{GetChannelIdxByName(Device->RealOut, FrontRight)};
auto &HrtfSamples = Device->HrtfSourceData;
auto &AccumSamples = Device->HrtfAccumData;
/* Copy the HRTF history and new input samples into a temp buffer. */
auto src_iter = std::copy(parms.Hrtf.State.History.begin(), parms.Hrtf.State.History.end(),
std::begin(HrtfSamples));
std::copy_n(samples, DstBufferSize, src_iter);
/* Copy the last used samples back into the history buffer for later. */
std::copy_n(std::begin(HrtfSamples) + DstBufferSize, parms.Hrtf.State.History.size(),
parms.Hrtf.State.History.begin());
/* Copy the current filtered values being accumulated into the temp buffer. */
auto accum_iter = std::copy_n(parms.Hrtf.State.Values.begin(), parms.Hrtf.State.Values.size(),
std::begin(AccumSamples));
/* Clear the accumulation buffer that will start getting filled in. */
std::fill_n(accum_iter, DstBufferSize, float2{});
/* If fading, the old gain is not silence, and this is the first mixing
* pass, fade between the IRs.
*/
ALuint fademix{0u};
if(Counter && parms.Hrtf.Old.Gain > GAIN_SILENCE_THRESHOLD && OutPos == 0)
{
fademix = minu(DstBufferSize, 128);
float gain{TargetGain};
/* The new coefficients need to fade in completely since they're
* replacing the old ones. To keep the gain fading consistent,
* interpolate between the old and new target gains given how much of
* the fade time this mix handles.
*/
if LIKELY(Counter > fademix)
{
const ALfloat a{static_cast<float>(fademix) / static_cast<float>(Counter)};
gain = lerp(parms.Hrtf.Old.Gain, TargetGain, a);
}
MixHrtfFilter hrtfparams;
hrtfparams.Coeffs = &parms.Hrtf.Target.Coeffs;
hrtfparams.Delay[0] = parms.Hrtf.Target.Delay[0];
hrtfparams.Delay[1] = parms.Hrtf.Target.Delay[1];
hrtfparams.Gain = 0.0f;
hrtfparams.GainStep = gain / static_cast<float>(fademix);
MixHrtfBlendSamples(Direct.Buffer[OutLIdx], Direct.Buffer[OutRIdx], HrtfSamples,
AccumSamples, OutPos, IrSize, &parms.Hrtf.Old, &hrtfparams, fademix);
/* Update the old parameters with the result. */
parms.Hrtf.Old = parms.Hrtf.Target;
if(fademix < Counter)
parms.Hrtf.Old.Gain = hrtfparams.Gain;
else
parms.Hrtf.Old.Gain = TargetGain;
}
if LIKELY(fademix < DstBufferSize)
{
const ALuint todo{DstBufferSize - fademix};
float gain{TargetGain};
/* Interpolate the target gain if the gain fading lasts longer than
* this mix.
*/
if(Counter > DstBufferSize)
{
const float a{static_cast<float>(todo) / static_cast<float>(Counter-fademix)};
gain = lerp(parms.Hrtf.Old.Gain, TargetGain, a);
}
MixHrtfFilter hrtfparams;
hrtfparams.Coeffs = &parms.Hrtf.Target.Coeffs;
hrtfparams.Delay[0] = parms.Hrtf.Target.Delay[0];
hrtfparams.Delay[1] = parms.Hrtf.Target.Delay[1];
hrtfparams.Gain = parms.Hrtf.Old.Gain;
hrtfparams.GainStep = (gain - parms.Hrtf.Old.Gain) / static_cast<float>(todo);
MixHrtfSamples(Direct.Buffer[OutLIdx], Direct.Buffer[OutRIdx], HrtfSamples+fademix,
AccumSamples+fademix, OutPos+fademix, IrSize, &hrtfparams, todo);
/* Store the interpolated gain or the final target gain depending if
* the fade is done.
*/
if(DstBufferSize < Counter)
parms.Hrtf.Old.Gain = gain;
else
parms.Hrtf.Old.Gain = TargetGain;
}
/* Copy the new in-progress accumulation values back for the next mix. */
std::copy_n(std::begin(AccumSamples) + DstBufferSize, parms.Hrtf.State.Values.size(),
parms.Hrtf.State.Values.begin());
}
void DoNfcMix(ALvoice::DirectData &Direct, const float *TargetGains, DirectParams &parms,
const float *samples, const ALuint DstBufferSize, const ALuint Counter, const ALuint OutPos,
ALCdevice *Device)
{
const size_t outcount{Device->NumChannelsPerOrder[0]};
MixSamples({samples, DstBufferSize}, Direct.Buffer.first(outcount),
parms.Gains.Current, TargetGains, Counter, OutPos);
const al::span<float> nfcsamples{Device->NfcSampleData, DstBufferSize};
size_t chanoffset{outcount};
using FilterProc = void (NfcFilter::*)(float*,const float*,const size_t);
auto apply_nfc = [&Direct,&parms,samples,TargetGains,Counter,OutPos,&chanoffset,nfcsamples](
const FilterProc process, const size_t chancount) -> void
{
if(chancount < 1) return;
(parms.NFCtrlFilter.*process)(nfcsamples.data(), samples, nfcsamples.size());
MixSamples(nfcsamples, Direct.Buffer.subspan(chanoffset, chancount),
parms.Gains.Current+chanoffset, TargetGains+chanoffset, Counter, OutPos);
chanoffset += chancount;
};
apply_nfc(&NfcFilter::process1, Device->NumChannelsPerOrder[1]);
apply_nfc(&NfcFilter::process2, Device->NumChannelsPerOrder[2]);
apply_nfc(&NfcFilter::process3, Device->NumChannelsPerOrder[3]);
}
} // namespace
void ALvoice::mix(State vstate, ALCcontext *Context, const ALuint SamplesToDo)
{
static constexpr ALfloat SilentTarget[MAX_OUTPUT_CHANNELS]{};
ASSUME(SamplesToDo > 0);
/* Get voice info */
const bool isstatic{(mFlags&VOICE_IS_STATIC) != 0};
ALuint DataPosInt{mPosition.load(std::memory_order_relaxed)};
ALuint DataPosFrac{mPositionFrac.load(std::memory_order_relaxed)};
ALbufferlistitem *BufferListItem{mCurrentBuffer.load(std::memory_order_relaxed)};
ALbufferlistitem *BufferLoopItem{mLoopBuffer.load(std::memory_order_relaxed)};
const ALuint NumChannels{mNumChannels};
const ALuint SampleSize{mSampleSize};
const ALuint increment{mStep};
if(increment < 1) return;
ASSUME(NumChannels > 0);
ASSUME(SampleSize > 0);
ASSUME(increment > 0);
ALCdevice *Device{Context->mDevice.get()};
const ALuint NumSends{Device->NumAuxSends};
const ALuint IrSize{Device->mHrtf ? Device->mHrtf->irSize : 0};
ResamplerFunc Resample{(increment == FRACTIONONE && DataPosFrac == 0) ?
Resample_<CopyTag,CTag> : mResampler};
ALuint Counter{(mFlags&VOICE_IS_FADING) ? SamplesToDo : 0};
if(!Counter)
{
/* No fading, just overwrite the old/current params. */
for(ALuint chan{0};chan < NumChannels;chan++)
{
ChannelData &chandata = mChans[chan];
{
DirectParams &parms = chandata.mDryParams;
if(!(mFlags&VOICE_HAS_HRTF))
std::copy(std::begin(parms.Gains.Target), std::end(parms.Gains.Target),
std::begin(parms.Gains.Current));
else
parms.Hrtf.Old = parms.Hrtf.Target;
}
for(ALuint send{0};send < NumSends;++send)
{
if(mSend[send].Buffer.empty())
continue;
SendParams &parms = chandata.mWetParams[send];
std::copy(std::begin(parms.Gains.Target), std::end(parms.Gains.Target),
std::begin(parms.Gains.Current));
}
}
}
else if((mFlags&VOICE_HAS_HRTF))
{
for(ALuint chan{0};chan < NumChannels;chan++)
{
DirectParams &parms = mChans[chan].mDryParams;
if(!(parms.Hrtf.Old.Gain > GAIN_SILENCE_THRESHOLD))
{
/* The old HRTF params are silent, so overwrite the old
* coefficients with the new, and reset the old gain to 0. The
* future mix will then fade from silence.
*/
parms.Hrtf.Old = parms.Hrtf.Target;
parms.Hrtf.Old.Gain = 0.0f;
}
}
}
ALuint buffers_done{0u};
ALuint OutPos{0u};
do {
/* Figure out how many buffer samples will be needed */
ALuint DstBufferSize{SamplesToDo - OutPos};
/* Calculate the last written dst sample pos. */
uint64_t DataSize64{DstBufferSize - 1};
/* Calculate the last read src sample pos. */
DataSize64 = (DataSize64*increment + DataPosFrac) >> FRACTIONBITS;
/* +1 to get the src sample count, include padding. */
DataSize64 += 1 + MAX_RESAMPLE_PADDING*2;
auto SrcBufferSize = static_cast<ALuint>(
minu64(DataSize64, BUFFERSIZE + MAX_RESAMPLE_PADDING*2 + 1));
if(SrcBufferSize > BUFFERSIZE + MAX_RESAMPLE_PADDING*2)
{
SrcBufferSize = BUFFERSIZE + MAX_RESAMPLE_PADDING*2;
/* If the source buffer got saturated, we can't fill the desired
* dst size. Figure out how many samples we can actually mix from
* this.
*/
DataSize64 = SrcBufferSize - MAX_RESAMPLE_PADDING*2;
DataSize64 = ((DataSize64<<FRACTIONBITS) - DataPosFrac + increment-1) / increment;
DstBufferSize = static_cast<ALuint>(minu64(DataSize64, DstBufferSize));
/* Some mixers like having a multiple of 4, so try to give that
* unless this is the last update.
*/
if(DstBufferSize < SamplesToDo-OutPos)
DstBufferSize &= ~3u;
}
ASSUME(DstBufferSize > 0);
for(ALuint chan{0};chan < NumChannels;chan++)
{
ChannelData &chandata = mChans[chan];
const al::span<ALfloat> SrcData{Device->SourceData, SrcBufferSize};
/* Load the previous samples into the source data first, then load
* what we can from the buffer queue.
*/
auto srciter = std::copy_n(chandata.mPrevSamples.begin(), MAX_RESAMPLE_PADDING,
SrcData.begin());
if UNLIKELY(!BufferListItem)
srciter = std::copy(chandata.mPrevSamples.begin()+MAX_RESAMPLE_PADDING,
chandata.mPrevSamples.end(), srciter);
else if(isstatic)
srciter = LoadBufferStatic(BufferListItem, BufferLoopItem, NumChannels,
SampleSize, chan, DataPosInt, {srciter, SrcData.end()});
else
srciter = LoadBufferQueue(BufferListItem, BufferLoopItem, NumChannels,
SampleSize, chan, DataPosInt, {srciter, SrcData.end()});
if UNLIKELY(srciter != SrcData.end())
{
/* If the source buffer wasn't filled, copy the last sample for
* the remaining buffer. Ideally it should have ended with
* silence, but if not the gain fading should help avoid clicks
* from sudden amplitude changes.
*/
const ALfloat sample{*(srciter-1)};
std::fill(srciter, SrcData.end(), sample);
}
/* Store the last source samples used for next time. */
std::copy_n(&SrcData[(increment*DstBufferSize + DataPosFrac)>>FRACTIONBITS],
chandata.mPrevSamples.size(), chandata.mPrevSamples.begin());
/* Resample, then apply ambisonic upsampling as needed. */
const ALfloat *ResampledData{Resample(&mResampleState, &SrcData[MAX_RESAMPLE_PADDING],
DataPosFrac, increment, {Device->ResampledData, DstBufferSize})};
if((mFlags&VOICE_IS_AMBISONIC))
{
const ALfloat hfscale{chandata.mAmbiScale};
/* Beware the evil const_cast. It's safe since it's pointing to
* either SourceData or ResampledData (both non-const), but the
* resample method takes the source as const float* and may
* return it without copying to output, making it currently
* unavoidable.
*/
chandata.mAmbiSplitter.applyHfScale(const_cast<ALfloat*>(ResampledData), hfscale,
DstBufferSize);
}
/* Now filter and mix to the appropriate outputs. */
ALfloat (&FilterBuf)[BUFFERSIZE] = Device->FilteredData;
{
DirectParams &parms = chandata.mDryParams;
const ALfloat *samples{DoFilters(&parms.LowPass, &parms.HighPass, FilterBuf,
ResampledData, DstBufferSize, mDirect.FilterType)};
if((mFlags&VOICE_HAS_HRTF))
{
const ALfloat TargetGain{UNLIKELY(vstate == ALvoice::Stopping) ? 0.0f :
parms.Hrtf.Target.Gain};
DoHrtfMix(mDirect, TargetGain, parms, samples, DstBufferSize, Counter, OutPos,
IrSize, Device);
}
else if((mFlags&VOICE_HAS_NFC))
{
const ALfloat *TargetGains{UNLIKELY(vstate == ALvoice::Stopping) ?
SilentTarget : parms.Gains.Target};
DoNfcMix(mDirect, TargetGains, parms, samples, DstBufferSize, Counter, OutPos,
Device);
}
else
{
const ALfloat *TargetGains{UNLIKELY(vstate == ALvoice::Stopping) ?
SilentTarget : parms.Gains.Target};
MixSamples({samples, DstBufferSize}, mDirect.Buffer, parms.Gains.Current,
TargetGains, Counter, OutPos);
}
}
for(ALuint send{0};send < NumSends;++send)
{
if(mSend[send].Buffer.empty())
continue;
SendParams &parms = chandata.mWetParams[send];
const ALfloat *samples{DoFilters(&parms.LowPass, &parms.HighPass, FilterBuf,
ResampledData, DstBufferSize, mSend[send].FilterType)};
const ALfloat *TargetGains{UNLIKELY(vstate==ALvoice::Stopping) ? SilentTarget :
parms.Gains.Target};
MixSamples({samples, DstBufferSize}, mSend[send].Buffer, parms.Gains.Current,
TargetGains, Counter, OutPos);
}
}
/* Update positions */
DataPosFrac += increment*DstBufferSize;
DataPosInt += DataPosFrac>>FRACTIONBITS;
DataPosFrac &= FRACTIONMASK;
OutPos += DstBufferSize;
Counter = maxu(DstBufferSize, Counter) - DstBufferSize;
if UNLIKELY(!BufferListItem)
{
/* Do nothing extra when there's no buffers. */
}
else if(isstatic)
{
if(BufferLoopItem)
{
/* Handle looping static source */
const ALbuffer *Buffer{BufferListItem->mBuffer};
const ALuint LoopStart{Buffer->LoopStart};
const ALuint LoopEnd{Buffer->LoopEnd};
if(DataPosInt >= LoopEnd)
{
assert(LoopEnd > LoopStart);
DataPosInt = ((DataPosInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart;
}
}
else
{
/* Handle non-looping static source */
if(DataPosInt >= BufferListItem->mSampleLen)
{
if LIKELY(vstate == ALvoice::Playing)
vstate = ALvoice::Stopped;
BufferListItem = nullptr;
break;
}
}
}
else while(1)
{
/* Handle streaming source */
if(BufferListItem->mSampleLen > DataPosInt)
break;
DataPosInt -= BufferListItem->mSampleLen;
++buffers_done;
BufferListItem = BufferListItem->mNext.load(std::memory_order_relaxed);
if(!BufferListItem && !(BufferListItem=BufferLoopItem))
{
if LIKELY(vstate == ALvoice::Playing)
vstate = ALvoice::Stopped;
break;
}
}
} while(OutPos < SamplesToDo);
mFlags |= VOICE_IS_FADING;
/* Don't update positions and buffers if we were stopping. */
if UNLIKELY(vstate == ALvoice::Stopping)
{
mPlayState.store(ALvoice::Stopped, std::memory_order_release);
return;
}
/* Capture the source ID in case it's reset for stopping. */
const ALuint SourceID{mSourceID.load(std::memory_order_relaxed)};
/* Update voice info */
mPosition.store(DataPosInt, std::memory_order_relaxed);
mPositionFrac.store(DataPosFrac, std::memory_order_relaxed);
mCurrentBuffer.store(BufferListItem, std::memory_order_relaxed);
if(vstate == ALvoice::Stopped)
{
mLoopBuffer.store(nullptr, std::memory_order_relaxed);
mSourceID.store(0u, std::memory_order_relaxed);
}
std::atomic_thread_fence(std::memory_order_release);
/* Send any events now, after the position/buffer info was updated. */
const ALbitfieldSOFT enabledevt{Context->mEnabledEvts.load(std::memory_order_acquire)};
if(buffers_done > 0 && (enabledevt&EventType_BufferCompleted))
{
RingBuffer *ring{Context->mAsyncEvents.get()};
auto evt_vec = ring->getWriteVector();
if(evt_vec.first.len > 0)
{
AsyncEvent *evt{new (evt_vec.first.buf) AsyncEvent{EventType_BufferCompleted}};
evt->u.bufcomp.id = SourceID;
evt->u.bufcomp.count = buffers_done;
ring->writeAdvance(1);
Context->mEventSem.post();
}
}
if(vstate == ALvoice::Stopped)
{
/* If the voice just ended, set it to Stopping so the next render
* ensures any residual noise fades to 0 amplitude.
*/
mPlayState.store(ALvoice::Stopping, std::memory_order_release);
if((enabledevt&EventType_SourceStateChange))
SendSourceStoppedEvent(Context, SourceID);
}
}
|