aboutsummaryrefslogtreecommitdiffstats
path: root/alc/panning.cpp
blob: c8a314b2e06f16221a95a20990957bdae918dbea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
/**
 * OpenAL cross platform audio library
 * Copyright (C) 1999-2010 by authors.
 * This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 *  License along with this library; if not, write to the
 *  Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 * Or go to http://www.gnu.org/copyleft/lgpl.html
 */

#include "config.h"

#include <algorithm>
#include <array>
#include <chrono>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <functional>
#include <iterator>
#include <memory>
#include <new>
#include <numeric>
#include <string>

#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"

#include "al/auxeffectslot.h"
#include "alcmain.h"
#include "alconfig.h"
#include "alcontext.h"
#include "almalloc.h"
#include "alnumeric.h"
#include "aloptional.h"
#include "alspan.h"
#include "alstring.h"
#include "alu.h"
#include "bformatdec.h"
#include "core/ambdec.h"
#include "core/ambidefs.h"
#include "core/bs2b.h"
#include "core/devformat.h"
#include "core/logging.h"
#include "core/uhjfilter.h"
#include "front_stablizer.h"
#include "hrtf.h"
#include "math_defs.h"
#include "opthelpers.h"


namespace {

using namespace std::placeholders;
using std::chrono::seconds;
using std::chrono::nanoseconds;

inline const char *GetLabelFromChannel(Channel channel)
{
    switch(channel)
    {
        case FrontLeft: return "front-left";
        case FrontRight: return "front-right";
        case FrontCenter: return "front-center";
        case LFE: return "lfe";
        case BackLeft: return "back-left";
        case BackRight: return "back-right";
        case BackCenter: return "back-center";
        case SideLeft: return "side-left";
        case SideRight: return "side-right";

        case TopFrontLeft: return "top-front-left";
        case TopFrontCenter: return "top-front-center";
        case TopFrontRight: return "top-front-right";
        case TopCenter: return "top-center";
        case TopBackLeft: return "top-back-left";
        case TopBackCenter: return "top-back-center";
        case TopBackRight: return "top-back-right";

        case MaxChannels: break;
    }
    return "(unknown)";
}


std::unique_ptr<FrontStablizer> CreateStablizer(const size_t outchans, const uint srate)
{
    auto stablizer = FrontStablizer::Create(outchans);
    for(auto &buf : stablizer->DelayBuf)
        std::fill(buf.begin(), buf.end(), 0.0f);

    /* Initialize band-splitting filter for the mid signal, with a crossover at
     * 5khz (could be higher).
     */
    stablizer->MidFilter.init(5000.0f / static_cast<float>(srate));

    return stablizer;
}

void AllocChannels(ALCdevice *device, const size_t main_chans, const size_t real_chans)
{
    TRACE("Channel config, Main: %zu, Real: %zu\n", main_chans, real_chans);

    /* Allocate extra channels for any post-filter output. */
    const size_t num_chans{main_chans + real_chans};

    TRACE("Allocating %zu channels, %zu bytes\n", num_chans,
        num_chans*sizeof(device->MixBuffer[0]));
    device->MixBuffer.resize(num_chans);
    al::span<FloatBufferLine> buffer{device->MixBuffer};

    device->Dry.Buffer = buffer.first(main_chans);
    buffer = buffer.subspan(main_chans);
    if(real_chans != 0)
    {
        device->RealOut.Buffer = buffer.first(real_chans);
        buffer = buffer.subspan(real_chans);
    }
    else
        device->RealOut.Buffer = device->Dry.Buffer;
}


struct ChannelMap {
    Channel ChanName;
    float Config[MaxAmbi2DChannels];
};

bool MakeSpeakerMap(ALCdevice *device, const AmbDecConf *conf, uint (&speakermap)[MAX_OUTPUT_CHANNELS])
{
    auto map_spkr = [device](const AmbDecConf::SpeakerConf &speaker) -> uint
    {
        /* NOTE: AmbDec does not define any standard speaker names, however
         * for this to work we have to by able to find the output channel
         * the speaker definition corresponds to. Therefore, OpenAL Soft
         * requires these channel labels to be recognized:
         *
         * LF = Front left
         * RF = Front right
         * LS = Side left
         * RS = Side right
         * LB = Back left
         * RB = Back right
         * CE = Front center
         * CB = Back center
         *
         * Additionally, surround51 will acknowledge back speakers for side
         * channels, and surround51rear will acknowledge side speakers for
         * back channels, to avoid issues with an ambdec expecting 5.1 to
         * use the side channels when the device is configured for back,
         * and vice-versa.
         */
        Channel ch{};
        if(speaker.Name == "LF")
            ch = FrontLeft;
        else if(speaker.Name == "RF")
            ch = FrontRight;
        else if(speaker.Name == "CE")
            ch = FrontCenter;
        else if(speaker.Name == "LS")
        {
            if(device->FmtChans == DevFmtX51Rear)
                ch = BackLeft;
            else
                ch = SideLeft;
        }
        else if(speaker.Name == "RS")
        {
            if(device->FmtChans == DevFmtX51Rear)
                ch = BackRight;
            else
                ch = SideRight;
        }
        else if(speaker.Name == "LB")
        {
            if(device->FmtChans == DevFmtX51)
                ch = SideLeft;
            else
                ch = BackLeft;
        }
        else if(speaker.Name == "RB")
        {
            if(device->FmtChans == DevFmtX51)
                ch = SideRight;
            else
                ch = BackRight;
        }
        else if(speaker.Name == "CB")
            ch = BackCenter;
        else
        {
            ERR("AmbDec speaker label \"%s\" not recognized\n", speaker.Name.c_str());
            return INVALID_CHANNEL_INDEX;
        }
        const uint chidx{GetChannelIdxByName(device->RealOut, ch)};
        if(chidx == INVALID_CHANNEL_INDEX)
            ERR("Failed to lookup AmbDec speaker label %s\n", speaker.Name.c_str());
        return chidx;
    };
    std::transform(conf->Speakers.get(), conf->Speakers.get()+conf->NumSpeakers,
        std::begin(speakermap), map_spkr);
    /* Return success if no invalid entries are found. */
    auto spkrmap_end = std::begin(speakermap) + conf->NumSpeakers;
    return std::find(std::begin(speakermap), spkrmap_end, INVALID_CHANNEL_INDEX) == spkrmap_end;
}


void InitNearFieldCtrl(ALCdevice *device, float ctrl_dist, uint order, bool is3d)
{
    static const uint chans_per_order2d[MaxAmbiOrder+1]{ 1, 2, 2, 2 };
    static const uint chans_per_order3d[MaxAmbiOrder+1]{ 1, 3, 5, 7 };

    /* NFC is only used when AvgSpeakerDist is greater than 0. */
    const char *devname{device->DeviceName.c_str()};
    if(!GetConfigValueBool(devname, "decoder", "nfc", 0) || !(ctrl_dist > 0.0f))
        return;

    device->AvgSpeakerDist = clampf(ctrl_dist, 0.1f, 10.0f);
    TRACE("Using near-field reference distance: %.2f meters\n", device->AvgSpeakerDist);

    auto iter = std::copy_n(is3d ? chans_per_order3d : chans_per_order2d, order+1u,
        std::begin(device->NumChannelsPerOrder));
    std::fill(iter, std::end(device->NumChannelsPerOrder), 0u);
}

void InitDistanceComp(ALCdevice *device, const AmbDecConf *conf,
    const uint (&speakermap)[MAX_OUTPUT_CHANNELS])
{
    auto get_max = std::bind(maxf, _1,
        std::bind(std::mem_fn(&AmbDecConf::SpeakerConf::Distance), _2));
    const float maxdist{std::accumulate(conf->Speakers.get(),
        conf->Speakers.get()+conf->NumSpeakers, 0.0f, get_max)};

    const char *devname{device->DeviceName.c_str()};
    if(!GetConfigValueBool(devname, "decoder", "distance-comp", 1) || !(maxdist > 0.0f))
        return;

    const auto distSampleScale = static_cast<float>(device->Frequency) / SpeedOfSoundMetersPerSec;
    std::vector<DistanceComp::ChanData> ChanDelay;
    size_t total{0u};
    ChanDelay.reserve(conf->NumSpeakers + 1);
    for(size_t i{0u};i < conf->NumSpeakers;i++)
    {
        const AmbDecConf::SpeakerConf &speaker = conf->Speakers[i];
        const uint chan{speakermap[i]};

        /* Distance compensation only delays in steps of the sample rate. This
         * is a bit less accurate since the delay time falls to the nearest
         * sample time, but it's far simpler as it doesn't have to deal with
         * phase offsets. This means at 48khz, for instance, the distance delay
         * will be in steps of about 7 millimeters.
         */
        float delay{std::floor((maxdist - speaker.Distance)*distSampleScale + 0.5f)};
        if(delay > float{MAX_DELAY_LENGTH-1})
        {
            ERR("Delay for speaker \"%s\" exceeds buffer length (%f > %d)\n",
                speaker.Name.c_str(), delay, MAX_DELAY_LENGTH-1);
            delay = float{MAX_DELAY_LENGTH-1};
        }

        ChanDelay.resize(maxz(ChanDelay.size(), chan+1));
        ChanDelay[chan].Length = static_cast<uint>(delay);
        ChanDelay[chan].Gain = speaker.Distance / maxdist;
        TRACE("Channel %u \"%s\" distance compensation: %u samples, %f gain\n", chan,
            speaker.Name.c_str(), ChanDelay[chan].Length, ChanDelay[chan].Gain);

        /* Round up to the next 4th sample, so each channel buffer starts
         * 16-byte aligned.
         */
        total += RoundUp(ChanDelay[chan].Length, 4);
    }

    if(total > 0)
    {
        auto chandelays = DistanceComp::Create(total);
        std::copy(ChanDelay.cbegin(), ChanDelay.cend(), chandelays->mChannels.begin());

        chandelays->mChannels[0].Buffer = chandelays->mSamples.data();
        auto set_bufptr = [](const DistanceComp::ChanData &last, const DistanceComp::ChanData &cur)
            -> DistanceComp::ChanData
        {
            DistanceComp::ChanData ret{cur};
            ret.Buffer = last.Buffer + RoundUp(last.Length, 4);
            return ret;
        };
        std::partial_sum(ChanDelay.begin(), ChanDelay.end(), ChanDelay.begin(), set_bufptr);
        device->ChannelDelays = std::move(chandelays);
    }
}


auto GetAmbiScales(DevAmbiScaling scaletype) noexcept -> const std::array<float,MaxAmbiChannels>&
{
    if(scaletype == DevAmbiScaling::FuMa) return AmbiScale::FromFuMa;
    if(scaletype == DevAmbiScaling::SN3D) return AmbiScale::FromSN3D;
    return AmbiScale::FromN3D;
}

auto GetAmbiLayout(DevAmbiLayout layouttype) noexcept -> const std::array<uint8_t,MaxAmbiChannels>&
{
    if(layouttype == DevAmbiLayout::FuMa) return AmbiIndex::FromFuMa;
    return AmbiIndex::FromACN;
}


using ChannelCoeffs = std::array<float,MaxAmbi2DChannels>;
enum DecoderMode : bool {
    SingleBand = false,
    DualBand = true
};

template<DecoderMode Mode, size_t N>
struct DecoderConfig;

template<size_t N>
struct DecoderConfig<SingleBand, N> {
    uint mOrder;
    std::array<Channel,N> mChannels;
    std::array<float,MaxAmbiOrder+1> mOrderGain;
    std::array<ChannelCoeffs,N> mCoeffs;
};

template<size_t N>
struct DecoderConfig<DualBand, N> {
    uint mOrder;
    std::array<Channel,N> mChannels;
    std::array<float,MaxAmbiOrder+1> mOrderGain;
    std::array<ChannelCoeffs,N> mCoeffs;
    std::array<float,MaxAmbiOrder+1> mOrderGainLF;
    std::array<ChannelCoeffs,N> mCoeffsLF;
};

template<>
struct DecoderConfig<DualBand, 0> {
    uint mOrder;
    al::span<const Channel> mChannels;
    al::span<const float> mOrderGain;
    al::span<const ChannelCoeffs> mCoeffs;
    al::span<const float> mOrderGainLF;
    al::span<const ChannelCoeffs> mCoeffsLF;

    template<size_t N>
    DecoderConfig& operator=(const DecoderConfig<SingleBand,N> &rhs) noexcept
    {
        mOrder = rhs.mOrder;
        mChannels = rhs.mChannels;
        mOrderGain = rhs.mOrderGain;
        mCoeffs = rhs.mCoeffs;
        mOrderGainLF = {};
        mCoeffsLF = {};
        return *this;
    }

    template<size_t N>
    DecoderConfig& operator=(const DecoderConfig<DualBand,N> &rhs) noexcept
    {
        mOrder = rhs.mOrder;
        mChannels = rhs.mChannels;
        mOrderGain = rhs.mOrderGain;
        mCoeffs = rhs.mCoeffs;
        mOrderGainLF = rhs.mOrderGainLF;
        mCoeffsLF = rhs.mCoeffsLF;
        return *this;
    }
};
using DecoderView = DecoderConfig<DualBand, 0>;

constexpr DecoderConfig<SingleBand, 1> MonoConfig{
    0, {{FrontCenter}},
    {{1.0f}},
    {{ {{1.0f}} }}
};
constexpr DecoderConfig<SingleBand, 2> StereoConfig{
    1, {{FrontLeft, FrontRight}},
    {{1.0f, 1.0f}},
    {{
        {{5.00000000e-1f,  2.88675135e-1f,  5.52305643e-2f}},
        {{5.00000000e-1f, -2.88675135e-1f,  5.52305643e-2f}},
    }}
};
constexpr DecoderConfig<DualBand, 4> QuadConfig{
    2, {{BackLeft, FrontLeft, FrontRight, BackRight}},
    /*HF*/{{1.15470054e+0f, 1.00000000e+0f, 5.77350269e-1f}},
    {{
        {{2.50000000e-1f,  2.04124145e-1f, -2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
        {{2.50000000e-1f,  2.04124145e-1f,  2.04124145e-1f,  1.29099445e-1f, 0.00000000e+0f}},
        {{2.50000000e-1f, -2.04124145e-1f,  2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
        {{2.50000000e-1f, -2.04124145e-1f, -2.04124145e-1f,  1.29099445e-1f, 0.00000000e+0f}},
    }},
    /*LF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}},
    {{
        {{2.50000000e-1f,  2.04124145e-1f, -2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
        {{2.50000000e-1f,  2.04124145e-1f,  2.04124145e-1f,  1.29099445e-1f, 0.00000000e+0f}},
        {{2.50000000e-1f, -2.04124145e-1f,  2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
        {{2.50000000e-1f, -2.04124145e-1f, -2.04124145e-1f,  1.29099445e-1f, 0.00000000e+0f}},
    }}
};
constexpr DecoderConfig<SingleBand, 4> X51Config{
    2, {{SideLeft, FrontLeft, FrontRight, SideRight}},
    {{1.0f, 1.0f, 1.0f}},
    {{
        {{3.33000782e-1f,  1.89084803e-1f, -2.00042375e-1f, -2.12307769e-2f, -1.14579885e-2f}},
        {{1.88542860e-1f,  1.27709292e-1f,  1.66295695e-1f,  7.30571517e-2f,  2.10901184e-2f}},
        {{1.88542860e-1f, -1.27709292e-1f,  1.66295695e-1f, -7.30571517e-2f,  2.10901184e-2f}},
        {{3.33000782e-1f, -1.89084803e-1f, -2.00042375e-1f,  2.12307769e-2f, -1.14579885e-2f}},
    }}
};
constexpr DecoderConfig<SingleBand, 4> X51RearConfig{
    2, {{BackLeft, FrontLeft, FrontRight, BackRight}},
    {{1.0f, 1.0f, 1.0f}},
    {{
        {{3.33000782e-1f,  1.89084803e-1f, -2.00042375e-1f, -2.12307769e-2f, -1.14579885e-2f}},
        {{1.88542860e-1f,  1.27709292e-1f,  1.66295695e-1f,  7.30571517e-2f,  2.10901184e-2f}},
        {{1.88542860e-1f, -1.27709292e-1f,  1.66295695e-1f, -7.30571517e-2f,  2.10901184e-2f}},
        {{3.33000782e-1f, -1.89084803e-1f, -2.00042375e-1f,  2.12307769e-2f, -1.14579885e-2f}},
    }}
};
constexpr DecoderConfig<SingleBand, 5> X61Config{
    2, {{SideLeft, FrontLeft, FrontRight, SideRight, BackCenter}},
    {{1.0f, 1.0f, 1.0f}},
    {{
        {{2.04460341e-1f,  2.17177926e-1f, -4.39996780e-2f, -2.60790269e-2f, -6.87239792e-2f}},
        {{1.58923161e-1f,  9.21772680e-2f,  1.59658796e-1f,  6.66278083e-2f,  3.84686854e-2f}},
        {{1.58923161e-1f, -9.21772680e-2f,  1.59658796e-1f, -6.66278083e-2f,  3.84686854e-2f}},
        {{2.04460341e-1f, -2.17177926e-1f, -4.39996780e-2f,  2.60790269e-2f, -6.87239792e-2f}},
        {{2.50001688e-1f,  0.00000000e+0f, -2.50000094e-1f,  0.00000000e+0f,  6.05133395e-2f}},
    }}
};
constexpr DecoderConfig<DualBand, 6> X71Config{
    3, {{BackLeft, SideLeft, FrontLeft, FrontRight, SideRight, BackRight}},
    /*HF*/{{1.22474487e+0f, 1.13151672e+0f, 8.66025404e-1f, 4.68689571e-1f}},
    {{
        {{1.66666667e-1f,  9.62250449e-2f, -1.66666667e-1f, -1.49071198e-1f,  8.60662966e-2f,  7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f,  1.92450090e-1f,  0.00000000e+0f,  0.00000000e+0f, -1.72132593e-1f, -7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f,  9.62250449e-2f,  1.66666667e-1f,  1.49071198e-1f,  8.60662966e-2f,  7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f, -9.62250449e-2f,  1.66666667e-1f, -1.49071198e-1f,  8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f, -1.92450090e-1f,  0.00000000e+0f,  0.00000000e+0f, -1.72132593e-1f,  7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f, -9.62250449e-2f, -1.66666667e-1f,  1.49071198e-1f,  8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
    }},
    /*LF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}},
    {{
        {{1.66666667e-1f,  9.62250449e-2f, -1.66666667e-1f, -1.49071198e-1f,  8.60662966e-2f,  7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f,  1.92450090e-1f,  0.00000000e+0f,  0.00000000e+0f, -1.72132593e-1f, -7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f,  9.62250449e-2f,  1.66666667e-1f,  1.49071198e-1f,  8.60662966e-2f,  7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f, -9.62250449e-2f,  1.66666667e-1f, -1.49071198e-1f,  8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f, -1.92450090e-1f,  0.00000000e+0f,  0.00000000e+0f, -1.72132593e-1f,  7.96819073e-2f, 0.00000000e+0f}},
        {{1.66666667e-1f, -9.62250449e-2f, -1.66666667e-1f,  1.49071198e-1f,  8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
    }}
};

void InitPanning(ALCdevice *device, const bool hqdec=false, const bool stablize=false)
{
    DecoderView decoder{};
    switch(device->FmtChans)
    {
    case DevFmtMono:
        decoder = MonoConfig;
        break;
    case DevFmtStereo:
        decoder = StereoConfig;
        break;
    case DevFmtQuad:
        decoder = QuadConfig;
        break;
    case DevFmtX51:
        decoder = X51Config;
        break;
    case DevFmtX51Rear:
        decoder = X51RearConfig;
        break;
    case DevFmtX61:
        decoder = X61Config;
        break;
    case DevFmtX71:
        decoder = X71Config;
        break;
    case DevFmtAmbi3D:
        break;
    }

    if(device->FmtChans == DevFmtAmbi3D)
    {
        const char *devname{device->DeviceName.c_str()};
        const std::array<uint8_t,MaxAmbiChannels> &acnmap = GetAmbiLayout(device->mAmbiLayout);
        const std::array<float,MaxAmbiChannels> &n3dscale = GetAmbiScales(device->mAmbiScale);

        /* For DevFmtAmbi3D, the ambisonic order is already set. */
        const size_t count{AmbiChannelsFromOrder(device->mAmbiOrder)};
        std::transform(acnmap.begin(), acnmap.begin()+count, std::begin(device->Dry.AmbiMap),
            [&n3dscale](const uint8_t &acn) noexcept -> BFChannelConfig
            { return BFChannelConfig{1.0f/n3dscale[acn], acn}; }
        );
        AllocChannels(device, count, 0);

        float nfc_delay{ConfigValueFloat(devname, "decoder", "nfc-ref-delay").value_or(0.0f)};
        if(nfc_delay > 0.0f)
            InitNearFieldCtrl(device, nfc_delay * SpeedOfSoundMetersPerSec, device->mAmbiOrder,
                true);
    }
    else
    {
        const bool dual_band{hqdec && !decoder.mCoeffsLF.empty()};
        al::vector<ChannelDec> chancoeffs, chancoeffslf;
        for(size_t i{0u};i < decoder.mChannels.size();++i)
        {
            const uint idx{GetChannelIdxByName(device->RealOut, decoder.mChannels[i])};
            if(idx == INVALID_CHANNEL_INDEX)
            {
                ERR("Failed to find %s channel in device\n",
                    GetLabelFromChannel(decoder.mChannels[i]));
                continue;
            }

            chancoeffs.resize(maxz(chancoeffs.size(), idx+1u), ChannelDec{});
            al::span<float,MaxAmbiChannels> coeffs{chancoeffs[idx]};
            size_t start{0};
            for(uint o{0};o <= decoder.mOrder;++o)
            {
                size_t count{o ? 2u : 1u};
                do {
                    coeffs[start] = decoder.mCoeffs[i][start] * decoder.mOrderGain[o];
                    ++start;
                } while(--count);
            }
            if(!dual_band)
                continue;

            chancoeffslf.resize(maxz(chancoeffslf.size(), idx+1u), ChannelDec{});
            coeffs = chancoeffslf[idx];
            start = 0;
            for(uint o{0};o <= decoder.mOrder;++o)
            {
                size_t count{o ? 2u : 1u};
                do {
                    coeffs[start] = decoder.mCoeffsLF[i][start] * decoder.mOrderGainLF[o];
                    ++start;
                } while(--count);
            }
        }

        /* For non-DevFmtAmbi3D, set the ambisonic order. */
        device->mAmbiOrder = decoder.mOrder;

        /* Built-in speaker decoders are always 2D. */
        const size_t ambicount{Ambi2DChannelsFromOrder(decoder.mOrder)};
        std::transform(AmbiIndex::FromACN2D.begin(), AmbiIndex::FromACN2D.begin()+ambicount,
            std::begin(device->Dry.AmbiMap),
            [](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
        );
        AllocChannels(device, ambicount, device->channelsFromFmt());

        std::unique_ptr<FrontStablizer> stablizer;
        if(stablize)
        {
            /* Only enable the stablizer if the decoder does not output to the
             * front-center channel.
             */
            const auto cidx = device->RealOut.ChannelIndex[FrontCenter];
            bool hasfc{false};
            if(cidx < chancoeffs.size())
            {
                for(const auto &coeff : chancoeffs[cidx])
                    hasfc |= coeff != 0.0f;
            }
            if(!hasfc && cidx < chancoeffslf.size())
            {
                for(const auto &coeff : chancoeffslf[cidx])
                    hasfc |= coeff != 0.0f;
            }
            if(!hasfc)
            {
                stablizer = CreateStablizer(device->channelsFromFmt(), device->Frequency);
                TRACE("Front stablizer enabled\n");
            }
        }

        TRACE("Enabling %s-band %s-order%s ambisonic decoder\n",
            !dual_band ? "single" : "dual",
            (decoder.mOrder > 2) ? "third" :
            (decoder.mOrder > 1) ? "second" : "first",
            "");
        device->AmbiDecoder = BFormatDec::Create(ambicount, chancoeffs, chancoeffslf,
            std::move(stablizer));
    }
}

void InitCustomPanning(ALCdevice *device, const bool hqdec, const bool stablize,
    const AmbDecConf *conf, const uint (&speakermap)[MAX_OUTPUT_CHANNELS])
{
    if(!hqdec && conf->FreqBands != 1)
        ERR("Basic renderer uses the high-frequency matrix as single-band (xover_freq = %.0fhz)\n",
            conf->XOverFreq);
    device->mXOverFreq = conf->XOverFreq;

    const uint order{(conf->ChanMask > Ambi2OrderMask) ? 3u :
        (conf->ChanMask > Ambi1OrderMask) ? 2u : 1u};
    device->mAmbiOrder = order;

    size_t count;
    if((conf->ChanMask&AmbiPeriphonicMask))
    {
        count = AmbiChannelsFromOrder(order);
        std::transform(AmbiIndex::FromACN.begin(), AmbiIndex::FromACN.begin()+count,
            std::begin(device->Dry.AmbiMap),
            [](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
        );
    }
    else
    {
        count = Ambi2DChannelsFromOrder(order);
        std::transform(AmbiIndex::FromACN2D.begin(), AmbiIndex::FromACN2D.begin()+count,
            std::begin(device->Dry.AmbiMap),
            [](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
        );
    }
    AllocChannels(device, count, device->channelsFromFmt());

    std::unique_ptr<FrontStablizer> stablizer;
    if(stablize)
    {
        /* Only enable the stablizer if the decoder does not output to the
         * front-center channel.
         */
        size_t cidx{0};
        for(;cidx < conf->NumSpeakers;++cidx)
        {
            if(speakermap[cidx] == FrontCenter)
                break;
        }
        bool hasfc{false};
        if(cidx < conf->NumSpeakers && conf->FreqBands != 1)
        {
            for(const auto &coeff : conf->LFMatrix[cidx])
                hasfc |= coeff != 0.0f;
        }
        if(!hasfc && cidx < conf->NumSpeakers)
        {
            for(const auto &coeff : conf->HFMatrix[cidx])
                hasfc |= coeff != 0.0f;
        }
        if(!hasfc)
        {
            stablizer = CreateStablizer(device->channelsFromFmt(), device->Frequency);
            TRACE("Front stablizer enabled\n");
        }
    }

    TRACE("Enabling %s-band %s-order%s ambisonic decoder\n",
        (!hqdec || conf->FreqBands == 1) ? "single" : "dual",
        (conf->ChanMask > Ambi2OrderMask) ? "third" :
        (conf->ChanMask > Ambi1OrderMask) ? "second" : "first",
        (conf->ChanMask&AmbiPeriphonicMask) ? " periphonic" : ""
    );
    device->AmbiDecoder = BFormatDec::Create(conf, hqdec, count, device->Frequency, speakermap,
        std::move(stablizer));

    auto accum_spkr_dist = std::bind(std::plus<float>{}, _1,
        std::bind(std::mem_fn(&AmbDecConf::SpeakerConf::Distance), _2));
    const float accum_dist{std::accumulate(conf->Speakers.get(),
        conf->Speakers.get()+conf->NumSpeakers, 0.0f, accum_spkr_dist)};
    InitNearFieldCtrl(device, accum_dist / static_cast<float>(conf->NumSpeakers), order,
        !!(conf->ChanMask&AmbiPeriphonicMask));

    InitDistanceComp(device, conf, speakermap);
}

void InitHrtfPanning(ALCdevice *device)
{
    constexpr float Deg180{al::MathDefs<float>::Pi()};
    constexpr float Deg_90{Deg180 / 2.0f /* 90 degrees*/};
    constexpr float Deg_45{Deg_90 / 2.0f /* 45 degrees*/};
    constexpr float Deg135{Deg_45 * 3.0f /*135 degrees*/};
    constexpr float Deg_35{6.154797086e-01f /* 35~ 36 degrees*/};
    constexpr float Deg_69{1.205932499e+00f /* 69~ 70 degrees*/};
    constexpr float Deg111{1.935660155e+00f /*110~111 degrees*/};
    constexpr float Deg_21{3.648638281e-01f /* 20~ 21 degrees*/};
    static const AngularPoint AmbiPoints1O[]{
        { EvRadians{ Deg_35}, AzRadians{-Deg_45} },
        { EvRadians{ Deg_35}, AzRadians{-Deg135} },
        { EvRadians{ Deg_35}, AzRadians{ Deg_45} },
        { EvRadians{ Deg_35}, AzRadians{ Deg135} },
        { EvRadians{-Deg_35}, AzRadians{-Deg_45} },
        { EvRadians{-Deg_35}, AzRadians{-Deg135} },
        { EvRadians{-Deg_35}, AzRadians{ Deg_45} },
        { EvRadians{-Deg_35}, AzRadians{ Deg135} },
    }, AmbiPoints2O[]{
        { EvRadians{-Deg_35}, AzRadians{-Deg_45} },
        { EvRadians{-Deg_35}, AzRadians{-Deg135} },
        { EvRadians{ Deg_35}, AzRadians{-Deg135} },
        { EvRadians{ Deg_35}, AzRadians{ Deg135} },
        { EvRadians{ Deg_35}, AzRadians{ Deg_45} },
        { EvRadians{-Deg_35}, AzRadians{ Deg_45} },
        { EvRadians{-Deg_35}, AzRadians{ Deg135} },
        { EvRadians{ Deg_35}, AzRadians{-Deg_45} },
        { EvRadians{-Deg_69}, AzRadians{-Deg_90} },
        { EvRadians{ Deg_69}, AzRadians{ Deg_90} },
        { EvRadians{-Deg_69}, AzRadians{ Deg_90} },
        { EvRadians{ Deg_69}, AzRadians{-Deg_90} },
        { EvRadians{   0.0f}, AzRadians{-Deg_69} },
        { EvRadians{   0.0f}, AzRadians{-Deg111} },
        { EvRadians{   0.0f}, AzRadians{ Deg_69} },
        { EvRadians{   0.0f}, AzRadians{ Deg111} },
        { EvRadians{-Deg_21}, AzRadians{ Deg180} },
        { EvRadians{ Deg_21}, AzRadians{ Deg180} },
        { EvRadians{ Deg_21}, AzRadians{   0.0f} },
        { EvRadians{-Deg_21}, AzRadians{   0.0f} },
    };
    static const float AmbiMatrix1O[][MaxAmbiChannels]{
        { 1.250000000e-01f,  1.250000000e-01f,  1.250000000e-01f,  1.250000000e-01f },
        { 1.250000000e-01f,  1.250000000e-01f,  1.250000000e-01f, -1.250000000e-01f },
        { 1.250000000e-01f, -1.250000000e-01f,  1.250000000e-01f,  1.250000000e-01f },
        { 1.250000000e-01f, -1.250000000e-01f,  1.250000000e-01f, -1.250000000e-01f },
        { 1.250000000e-01f,  1.250000000e-01f, -1.250000000e-01f,  1.250000000e-01f },
        { 1.250000000e-01f,  1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f },
        { 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f,  1.250000000e-01f },
        { 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f },
    }, AmbiMatrix2O[][MaxAmbiChannels]{
        { 5.000000000e-02f,  5.000000000e-02f, -5.000000000e-02f,  5.000000000e-02f,  6.454972244e-02f, -6.454972244e-02f,  0.000000000e+00f, -6.454972244e-02f,  0.000000000e+00f },
        { 5.000000000e-02f,  5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, -6.454972244e-02f, -6.454972244e-02f,  0.000000000e+00f,  6.454972244e-02f,  0.000000000e+00f },
        { 5.000000000e-02f,  5.000000000e-02f,  5.000000000e-02f, -5.000000000e-02f, -6.454972244e-02f,  6.454972244e-02f,  0.000000000e+00f, -6.454972244e-02f,  0.000000000e+00f },
        { 5.000000000e-02f, -5.000000000e-02f,  5.000000000e-02f, -5.000000000e-02f,  6.454972244e-02f, -6.454972244e-02f,  0.000000000e+00f, -6.454972244e-02f,  0.000000000e+00f },
        { 5.000000000e-02f, -5.000000000e-02f,  5.000000000e-02f,  5.000000000e-02f, -6.454972244e-02f, -6.454972244e-02f,  0.000000000e+00f,  6.454972244e-02f,  0.000000000e+00f },
        { 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f,  5.000000000e-02f, -6.454972244e-02f,  6.454972244e-02f,  0.000000000e+00f, -6.454972244e-02f,  0.000000000e+00f },
        { 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f,  6.454972244e-02f,  6.454972244e-02f,  0.000000000e+00f,  6.454972244e-02f,  0.000000000e+00f },
        { 5.000000000e-02f,  5.000000000e-02f,  5.000000000e-02f,  5.000000000e-02f,  6.454972244e-02f,  6.454972244e-02f,  0.000000000e+00f,  6.454972244e-02f,  0.000000000e+00f },
        { 5.000000000e-02f,  3.090169944e-02f, -8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f, -6.454972244e-02f,  9.045084972e-02f,  0.000000000e+00f, -1.232790000e-02f },
        { 5.000000000e-02f, -3.090169944e-02f,  8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f, -6.454972244e-02f,  9.045084972e-02f,  0.000000000e+00f, -1.232790000e-02f },
        { 5.000000000e-02f, -3.090169944e-02f, -8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f,  6.454972244e-02f,  9.045084972e-02f,  0.000000000e+00f, -1.232790000e-02f },
        { 5.000000000e-02f,  3.090169944e-02f,  8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f,  6.454972244e-02f,  9.045084972e-02f,  0.000000000e+00f, -1.232790000e-02f },
        { 5.000000000e-02f,  8.090169944e-02f,  0.000000000e+00f,  3.090169944e-02f,  6.454972244e-02f,  0.000000000e+00f, -5.590169944e-02f,  0.000000000e+00f, -7.216878365e-02f },
        { 5.000000000e-02f,  8.090169944e-02f,  0.000000000e+00f, -3.090169944e-02f, -6.454972244e-02f,  0.000000000e+00f, -5.590169944e-02f,  0.000000000e+00f, -7.216878365e-02f },
        { 5.000000000e-02f, -8.090169944e-02f,  0.000000000e+00f,  3.090169944e-02f, -6.454972244e-02f,  0.000000000e+00f, -5.590169944e-02f,  0.000000000e+00f, -7.216878365e-02f },
        { 5.000000000e-02f, -8.090169944e-02f,  0.000000000e+00f, -3.090169944e-02f,  6.454972244e-02f,  0.000000000e+00f, -5.590169944e-02f,  0.000000000e+00f, -7.216878365e-02f },
        { 5.000000000e-02f,  0.000000000e+00f, -3.090169944e-02f, -8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f, -3.454915028e-02f,  6.454972244e-02f,  8.449668365e-02f },
        { 5.000000000e-02f,  0.000000000e+00f,  3.090169944e-02f, -8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f, -3.454915028e-02f, -6.454972244e-02f,  8.449668365e-02f },
        { 5.000000000e-02f,  0.000000000e+00f,  3.090169944e-02f,  8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f, -3.454915028e-02f,  6.454972244e-02f,  8.449668365e-02f },
        { 5.000000000e-02f,  0.000000000e+00f, -3.090169944e-02f,  8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f, -3.454915028e-02f, -6.454972244e-02f,  8.449668365e-02f },
    };
    static const float AmbiOrderHFGain1O[MaxAmbiOrder+1]{
        2.000000000e+00f, 1.154700538e+00f
    }, AmbiOrderHFGain2O[MaxAmbiOrder+1]{
        2.357022604e+00f, 1.825741858e+00f, 9.428090416e-01f
    };

    static_assert(al::size(AmbiPoints1O) == al::size(AmbiMatrix1O), "First-Order Ambisonic HRTF mismatch");
    static_assert(al::size(AmbiPoints2O) == al::size(AmbiMatrix2O), "Second-Order Ambisonic HRTF mismatch");

    /* Don't bother with HOA when using full HRTF rendering. Nothing needs it,
     * and it eases the CPU/memory load.
     */
    device->mRenderMode = RenderMode::Hrtf;
    uint ambi_order{1};
    if(auto modeopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "hrtf-mode"))
    {
        struct HrtfModeEntry {
            char name[8];
            RenderMode mode;
            uint order;
        };
        static const HrtfModeEntry hrtf_modes[]{
            { "full", RenderMode::Hrtf, 1 },
            { "ambi1", RenderMode::Normal, 1 },
            { "ambi2", RenderMode::Normal, 2 },
        };

        const char *mode{modeopt->c_str()};
        if(al::strcasecmp(mode, "basic") == 0 || al::strcasecmp(mode, "ambi3") == 0)
        {
            ERR("HRTF mode \"%s\" deprecated, substituting \"%s\"\n", mode, "ambi2");
            mode = "ambi2";
        }

        auto match_entry = [mode](const HrtfModeEntry &entry) -> bool
        { return al::strcasecmp(mode, entry.name) == 0; };
        auto iter = std::find_if(std::begin(hrtf_modes), std::end(hrtf_modes), match_entry);
        if(iter == std::end(hrtf_modes))
            ERR("Unexpected hrtf-mode: %s\n", mode);
        else
        {
            device->mRenderMode = iter->mode;
            ambi_order = iter->order;
        }
    }
    TRACE("%u%s order %sHRTF rendering enabled, using \"%s\"\n", ambi_order,
        (((ambi_order%100)/10) == 1) ? "th" :
        ((ambi_order%10) == 1) ? "st" :
        ((ambi_order%10) == 2) ? "nd" :
        ((ambi_order%10) == 3) ? "rd" : "th",
        (device->mRenderMode == RenderMode::Hrtf) ? "+ Full " : "",
        device->HrtfName.c_str());

    al::span<const AngularPoint> AmbiPoints{AmbiPoints1O};
    const float (*AmbiMatrix)[MaxAmbiChannels]{AmbiMatrix1O};
    al::span<const float,MaxAmbiOrder+1> AmbiOrderHFGain{AmbiOrderHFGain1O};
    if(ambi_order >= 2)
    {
        AmbiPoints = AmbiPoints2O;
        AmbiMatrix = AmbiMatrix2O;
        AmbiOrderHFGain = AmbiOrderHFGain2O;
    }
    device->mAmbiOrder = ambi_order;

    const size_t count{AmbiChannelsFromOrder(ambi_order)};
    std::transform(AmbiIndex::FromACN.begin(), AmbiIndex::FromACN.begin()+count,
        std::begin(device->Dry.AmbiMap),
        [](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
    );
    AllocChannels(device, count, device->channelsFromFmt());

    HrtfStore *Hrtf{device->mHrtf.get()};
    auto hrtfstate = DirectHrtfState::Create(count);
    hrtfstate->build(Hrtf, device->mIrSize, AmbiPoints, AmbiMatrix, device->mXOverFreq,
        AmbiOrderHFGain);
    device->mHrtfState = std::move(hrtfstate);

    InitNearFieldCtrl(device, Hrtf->field[0].distance, ambi_order, true);
}

void InitUhjPanning(ALCdevice *device)
{
    /* UHJ is always 2D first-order. */
    constexpr size_t count{Ambi2DChannelsFromOrder(1)};

    device->mAmbiOrder = 1;

    auto acnmap_end = AmbiIndex::FromFuMa.begin() + count;
    std::transform(AmbiIndex::FromFuMa.begin(), acnmap_end, std::begin(device->Dry.AmbiMap),
        [](const uint8_t &acn) noexcept -> BFChannelConfig
        { return BFChannelConfig{1.0f/AmbiScale::FromFuMa[acn], acn}; }
    );
    AllocChannels(device, count, device->channelsFromFmt());
}

} // namespace

void aluInitRenderer(ALCdevice *device, int hrtf_id, HrtfRequestMode hrtf_appreq,
    HrtfRequestMode hrtf_userreq)
{
    const char *devname{device->DeviceName.c_str()};

    /* Hold the HRTF the device last used, in case it's used again. */
    HrtfStorePtr old_hrtf{std::move(device->mHrtf)};

    device->mHrtfState = nullptr;
    device->mHrtf = nullptr;
    device->mIrSize = 0;
    device->HrtfName.clear();
    device->mXOverFreq = 400.0f;
    device->mRenderMode = RenderMode::Normal;

    if(device->FmtChans != DevFmtStereo)
    {
        old_hrtf = nullptr;
        if(hrtf_appreq == Hrtf_Enable)
            device->HrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT;

        const char *layout{nullptr};
        switch(device->FmtChans)
        {
            case DevFmtQuad: layout = "quad"; break;
            case DevFmtX51: /* fall-through */
            case DevFmtX51Rear: layout = "surround51"; break;
            case DevFmtX61: layout = "surround61"; break;
            case DevFmtX71: layout = "surround71"; break;
            /* Mono, Stereo, and Ambisonics output don't use custom decoders. */
            case DevFmtMono:
            case DevFmtStereo:
            case DevFmtAmbi3D:
                break;
        }

        uint speakermap[MAX_OUTPUT_CHANNELS];
        AmbDecConf *pconf{nullptr};
        AmbDecConf conf{};
        if(layout)
        {
            if(auto decopt = ConfigValueStr(devname, "decoder", layout))
            {
                if(auto err = conf.load(decopt->c_str()))
                {
                    ERR("Failed to load layout file %s\n", decopt->c_str());
                    ERR("  %s\n", err->c_str());
                }
                else if(conf.NumSpeakers > MAX_OUTPUT_CHANNELS)
                    ERR("Unsupported decoder speaker count %zu (max %d)\n", conf.NumSpeakers,
                        MAX_OUTPUT_CHANNELS);
                else if(conf.ChanMask > Ambi3OrderMask)
                    ERR("Unsupported decoder channel mask 0x%04x (max 0x%x)\n", conf.ChanMask,
                        Ambi3OrderMask);
                else if(MakeSpeakerMap(device, &conf, speakermap))
                    pconf = &conf;
            }
        }

        /* Enable the stablizer only for formats that have front-left, front-
         * right, and front-center outputs.
         */
        const bool stablize{device->RealOut.ChannelIndex[FrontCenter] != INVALID_CHANNEL_INDEX
            && device->RealOut.ChannelIndex[FrontLeft] != INVALID_CHANNEL_INDEX
            && device->RealOut.ChannelIndex[FrontRight] != INVALID_CHANNEL_INDEX
            && GetConfigValueBool(devname, nullptr, "front-stablizer", 0) != 0};
        const bool hqdec{GetConfigValueBool(devname, "decoder", "hq-mode", 1) != 0};
        if(!pconf)
            InitPanning(device, hqdec, stablize);
        else
            InitCustomPanning(device, hqdec, stablize, pconf, speakermap);
        if(auto *ambidec{device->AmbiDecoder.get()})
        {
            device->PostProcess = ambidec->hasStablizer() ? &ALCdevice::ProcessAmbiDecStablized
                : &ALCdevice::ProcessAmbiDec;
        }
        return;
    }

    bool headphones{device->IsHeadphones};
    if(device->Type != DeviceType::Loopback)
    {
        if(auto modeopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "stereo-mode"))
        {
            const char *mode{modeopt->c_str()};
            if(al::strcasecmp(mode, "headphones") == 0)
                headphones = true;
            else if(al::strcasecmp(mode, "speakers") == 0)
                headphones = false;
            else if(al::strcasecmp(mode, "auto") != 0)
                ERR("Unexpected stereo-mode: %s\n", mode);
        }
    }

    if(hrtf_userreq == Hrtf_Default)
    {
        bool usehrtf = (headphones && hrtf_appreq != Hrtf_Disable) ||
                       (hrtf_appreq == Hrtf_Enable);
        if(!usehrtf) goto no_hrtf;

        device->HrtfStatus = ALC_HRTF_ENABLED_SOFT;
        if(headphones && hrtf_appreq != Hrtf_Disable)
            device->HrtfStatus = ALC_HRTF_HEADPHONES_DETECTED_SOFT;
    }
    else
    {
        if(hrtf_userreq != Hrtf_Enable)
        {
            if(hrtf_appreq == Hrtf_Enable)
                device->HrtfStatus = ALC_HRTF_DENIED_SOFT;
            goto no_hrtf;
        }
        device->HrtfStatus = ALC_HRTF_REQUIRED_SOFT;
    }

    if(device->HrtfList.empty())
        device->HrtfList = EnumerateHrtf(device->DeviceName.c_str());

    if(hrtf_id >= 0 && static_cast<uint>(hrtf_id) < device->HrtfList.size())
    {
        const std::string &hrtfname = device->HrtfList[static_cast<uint>(hrtf_id)];
        if(HrtfStorePtr hrtf{GetLoadedHrtf(hrtfname, device->Frequency)})
        {
            device->mHrtf = std::move(hrtf);
            device->HrtfName = hrtfname;
        }
    }

    if(!device->mHrtf)
    {
        for(const auto &hrtfname : device->HrtfList)
        {
            if(HrtfStorePtr hrtf{GetLoadedHrtf(hrtfname, device->Frequency)})
            {
                device->mHrtf = std::move(hrtf);
                device->HrtfName = hrtfname;
                break;
            }
        }
    }

    if(device->mHrtf)
    {
        old_hrtf = nullptr;

        HrtfStore *hrtf{device->mHrtf.get()};
        device->mIrSize = hrtf->irSize;
        if(auto hrtfsizeopt = ConfigValueUInt(devname, nullptr, "hrtf-size"))
        {
            if(*hrtfsizeopt > 0 && *hrtfsizeopt < device->mIrSize)
                device->mIrSize = maxu(*hrtfsizeopt, MinIrLength);
        }

        InitHrtfPanning(device);
        device->PostProcess = &ALCdevice::ProcessHrtf;
        return;
    }
    device->HrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT;

no_hrtf:
    old_hrtf = nullptr;

    device->mRenderMode = RenderMode::Pairwise;

    if(device->Type != DeviceType::Loopback)
    {
        if(auto cflevopt = ConfigValueInt(device->DeviceName.c_str(), nullptr, "cf_level"))
        {
            if(*cflevopt > 0 && *cflevopt <= 6)
            {
                device->Bs2b = std::make_unique<bs2b>();
                bs2b_set_params(device->Bs2b.get(), *cflevopt,
                    static_cast<int>(device->Frequency));
                TRACE("BS2B enabled\n");
                InitPanning(device);
                device->PostProcess = &ALCdevice::ProcessBs2b;
                return;
            }
        }
    }

    if(auto encopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "stereo-encoding"))
    {
        const char *mode{encopt->c_str()};
        if(al::strcasecmp(mode, "uhj") == 0)
            device->mRenderMode = RenderMode::Normal;
        else if(al::strcasecmp(mode, "panpot") != 0)
            ERR("Unexpected stereo-encoding: %s\n", mode);
    }
    if(device->mRenderMode == RenderMode::Normal)
    {
        device->Uhj_Encoder = std::make_unique<Uhj2Encoder>();
        TRACE("UHJ enabled\n");
        InitUhjPanning(device);
        device->PostProcess = &ALCdevice::ProcessUhj;
        return;
    }

    TRACE("Stereo rendering\n");
    InitPanning(device);
    device->PostProcess = &ALCdevice::ProcessAmbiDec;
}


void aluInitEffectPanning(EffectSlot *slot, ALCcontext *context)
{
    ALCdevice *device{context->mDevice.get()};
    const size_t count{AmbiChannelsFromOrder(device->mAmbiOrder)};

    auto wetbuffer_iter = context->mWetBuffers.end();
    if(slot->mWetBuffer)
    {
        /* If the effect slot already has a wet buffer attached, allocate a new
         * one in its place.
         */
        wetbuffer_iter = context->mWetBuffers.begin();
        for(;wetbuffer_iter != context->mWetBuffers.end();++wetbuffer_iter)
        {
            if(wetbuffer_iter->get() == slot->mWetBuffer)
            {
                slot->mWetBuffer = nullptr;
                slot->Wet.Buffer = {};

                *wetbuffer_iter = WetBufferPtr{new(FamCount(count)) WetBuffer{count}};

                break;
            }
        }
    }
    if(wetbuffer_iter == context->mWetBuffers.end())
    {
        /* Otherwise, search for an unused wet buffer. */
        wetbuffer_iter = context->mWetBuffers.begin();
        for(;wetbuffer_iter != context->mWetBuffers.end();++wetbuffer_iter)
        {
            if(!(*wetbuffer_iter)->mInUse)
                break;
        }
        if(wetbuffer_iter == context->mWetBuffers.end())
        {
            /* Otherwise, allocate a new one to use. */
            context->mWetBuffers.emplace_back(WetBufferPtr{new(FamCount(count)) WetBuffer{count}});
            wetbuffer_iter = context->mWetBuffers.end()-1;
        }
    }
    WetBuffer *wetbuffer{slot->mWetBuffer = wetbuffer_iter->get()};
    wetbuffer->mInUse = true;

    auto acnmap_end = AmbiIndex::FromACN.begin() + count;
    auto iter = std::transform(AmbiIndex::FromACN.begin(), acnmap_end, slot->Wet.AmbiMap.begin(),
        [](const uint8_t &acn) noexcept -> BFChannelConfig
        { return BFChannelConfig{1.0f, acn}; });
    std::fill(iter, slot->Wet.AmbiMap.end(), BFChannelConfig{});
    slot->Wet.Buffer = wetbuffer->mBuffer;
}


std::array<float,MaxAmbiChannels> CalcAmbiCoeffs(const float y, const float z, const float x,
    const float spread)
{
    std::array<float,MaxAmbiChannels> coeffs;

    /* Zeroth-order */
    coeffs[0]  = 1.0f; /* ACN 0 = 1 */
    /* First-order */
    coeffs[1]  = 1.732050808f * y; /* ACN 1 = sqrt(3) * Y */
    coeffs[2]  = 1.732050808f * z; /* ACN 2 = sqrt(3) * Z */
    coeffs[3]  = 1.732050808f * x; /* ACN 3 = sqrt(3) * X */
    /* Second-order */
    const float xx{x*x}, yy{y*y}, zz{z*z}, xy{x*y}, yz{y*z}, xz{x*z};
    coeffs[4]  = 3.872983346f * xy;               /* ACN 4 = sqrt(15) * X * Y */
    coeffs[5]  = 3.872983346f * yz;               /* ACN 5 = sqrt(15) * Y * Z */
    coeffs[6]  = 1.118033989f * (3.0f*zz - 1.0f); /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */
    coeffs[7]  = 3.872983346f * xz;               /* ACN 7 = sqrt(15) * X * Z */
    coeffs[8]  = 1.936491673f * (xx - yy);        /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */
    /* Third-order */
    coeffs[9]  =  2.091650066f * (y*(3.0f*xx - yy));   /* ACN  9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */
    coeffs[10] = 10.246950766f * (z*xy);               /* ACN 10 = sqrt(105) * Z * X * Y */
    coeffs[11] =  1.620185175f * (y*(5.0f*zz - 1.0f)); /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */
    coeffs[12] =  1.322875656f * (z*(5.0f*zz - 3.0f)); /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */
    coeffs[13] =  1.620185175f * (x*(5.0f*zz - 1.0f)); /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */
    coeffs[14] =  5.123475383f * (z*(xx - yy));        /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */
    coeffs[15] =  2.091650066f * (x*(xx - 3.0f*yy));   /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */
    /* Fourth-order */
    /* ACN 16 = sqrt(35)*3/2 * X * Y * (X*X - Y*Y) */
    /* ACN 17 = sqrt(35/2)*3/2 * (3*X*X - Y*Y) * Y * Z */
    /* ACN 18 = sqrt(5)*3/2 * X * Y * (7*Z*Z - 1) */
    /* ACN 19 = sqrt(5/2)*3/2 * Y * Z * (7*Z*Z - 3)  */
    /* ACN 20 = 3/8 * (35*Z*Z*Z*Z - 30*Z*Z + 3) */
    /* ACN 21 = sqrt(5/2)*3/2 * X * Z * (7*Z*Z - 3) */
    /* ACN 22 = sqrt(5)*3/4 * (X*X - Y*Y) * (7*Z*Z - 1) */
    /* ACN 23 = sqrt(35/2)*3/2 * (X*X - 3*Y*Y) * X * Z */
    /* ACN 24 = sqrt(35)*3/8 * (X*X*X*X - 6*X*X*Y*Y + Y*Y*Y*Y) */

    if(spread > 0.0f)
    {
        /* Implement the spread by using a spherical source that subtends the
         * angle spread. See:
         * http://www.ppsloan.org/publications/StupidSH36.pdf - Appendix A3
         *
         * When adjusted for N3D normalization instead of SN3D, these
         * calculations are:
         *
         * ZH0 = -sqrt(pi) * (-1+ca);
         * ZH1 =  0.5*sqrt(pi) * sa*sa;
         * ZH2 = -0.5*sqrt(pi) * ca*(-1+ca)*(ca+1);
         * ZH3 = -0.125*sqrt(pi) * (-1+ca)*(ca+1)*(5*ca*ca - 1);
         * ZH4 = -0.125*sqrt(pi) * ca*(-1+ca)*(ca+1)*(7*ca*ca - 3);
         * ZH5 = -0.0625*sqrt(pi) * (-1+ca)*(ca+1)*(21*ca*ca*ca*ca - 14*ca*ca + 1);
         *
         * The gain of the source is compensated for size, so that the
         * loudness doesn't depend on the spread. Thus:
         *
         * ZH0 = 1.0f;
         * ZH1 = 0.5f * (ca+1.0f);
         * ZH2 = 0.5f * (ca+1.0f)*ca;
         * ZH3 = 0.125f * (ca+1.0f)*(5.0f*ca*ca - 1.0f);
         * ZH4 = 0.125f * (ca+1.0f)*(7.0f*ca*ca - 3.0f)*ca;
         * ZH5 = 0.0625f * (ca+1.0f)*(21.0f*ca*ca*ca*ca - 14.0f*ca*ca + 1.0f);
         */
        const float ca{std::cos(spread * 0.5f)};
        /* Increase the source volume by up to +3dB for a full spread. */
        const float scale{std::sqrt(1.0f + spread/al::MathDefs<float>::Tau())};

        const float ZH0_norm{scale};
        const float ZH1_norm{scale * 0.5f * (ca+1.f)};
        const float ZH2_norm{scale * 0.5f * (ca+1.f)*ca};
        const float ZH3_norm{scale * 0.125f * (ca+1.f)*(5.f*ca*ca-1.f)};

        /* Zeroth-order */
        coeffs[0]  *= ZH0_norm;
        /* First-order */
        coeffs[1]  *= ZH1_norm;
        coeffs[2]  *= ZH1_norm;
        coeffs[3]  *= ZH1_norm;
        /* Second-order */
        coeffs[4]  *= ZH2_norm;
        coeffs[5]  *= ZH2_norm;
        coeffs[6]  *= ZH2_norm;
        coeffs[7]  *= ZH2_norm;
        coeffs[8]  *= ZH2_norm;
        /* Third-order */
        coeffs[9]  *= ZH3_norm;
        coeffs[10] *= ZH3_norm;
        coeffs[11] *= ZH3_norm;
        coeffs[12] *= ZH3_norm;
        coeffs[13] *= ZH3_norm;
        coeffs[14] *= ZH3_norm;
        coeffs[15] *= ZH3_norm;
    }

    return coeffs;
}

void ComputePanGains(const MixParams *mix, const float*RESTRICT coeffs, const float ingain,
    const al::span<float,MAX_OUTPUT_CHANNELS> gains)
{
    auto ambimap = mix->AmbiMap.cbegin();

    auto iter = std::transform(ambimap, ambimap+mix->Buffer.size(), gains.begin(),
        [coeffs,ingain](const BFChannelConfig &chanmap) noexcept -> float
        { return chanmap.Scale * coeffs[chanmap.Index] * ingain; }
    );
    std::fill(iter, gains.end(), 0.0f);
}