blob: ace1b43fbeec8ce7fc2abe63a4ee0b1706e9d550 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
|
#include "config.h"
#include "alcomplex.h"
#include <cmath>
namespace {
constexpr double Pi{3.141592653589793238462643383279502884};
} // namespace
void complex_fft(std::complex<double> *FFTBuffer, int FFTSize, double Sign)
{
/* Bit-reversal permutation applied to a sequence of FFTSize items */
for(int i{1};i < FFTSize-1;i++)
{
int j{0};
for(int mask{1};mask < FFTSize;mask <<= 1)
{
if((i&mask) != 0)
j++;
j <<= 1;
}
j >>= 1;
if(i < j)
std::swap(FFTBuffer[i], FFTBuffer[j]);
}
/* Iterative form of DanielsonLanczos lemma */
int step{2};
for(int i{1};i < FFTSize;i<<=1, step<<=1)
{
int step2{step >> 1};
double arg{Pi / step2};
std::complex<double> w{std::cos(arg), std::sin(arg)*Sign};
std::complex<double> u{1.0, 0.0};
for(int j{0};j < step2;j++)
{
for(int k{j};k < FFTSize;k+=step)
{
std::complex<double> temp{FFTBuffer[k+step2] * u};
FFTBuffer[k+step2] = FFTBuffer[k] - temp;
FFTBuffer[k] += temp;
}
u *= w;
}
}
}
void complex_hilbert(std::complex<double> *Buffer, int size)
{
const double inverse_size = 1.0/static_cast<double>(size);
for(int i{0};i < size;i++)
Buffer[i].imag(0.0);
complex_fft(Buffer, size, 1.0);
int todo{size>>1};
int i{0};
Buffer[i++] *= inverse_size;
while(i < todo)
Buffer[i++] *= 2.0*inverse_size;
Buffer[i++] *= inverse_size;
for(;i < size;i++)
Buffer[i] = std::complex<double>{};
complex_fft(Buffer, size, -1.0);
}
|