blob: cfd164b66ebe2fe5be4de3a6fcfe8173c3e3ec9d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
|
#ifndef ALCOMPLEX_H
#define ALCOMPLEX_H
#include "AL/al.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef struct ALcomplex {
ALdouble Real;
ALdouble Imag;
} ALcomplex;
/** Addition of two complex numbers. */
inline ALcomplex complex_add(ALcomplex a, ALcomplex b)
{
ALcomplex result;
result.Real = a.Real + b.Real;
result.Imag = a.Imag + b.Imag;
return result;
}
/** Subtraction of two complex numbers. */
inline ALcomplex complex_sub(ALcomplex a, ALcomplex b)
{
ALcomplex result;
result.Real = a.Real - b.Real;
result.Imag = a.Imag - b.Imag;
return result;
}
/** Multiplication of two complex numbers. */
inline ALcomplex complex_mult(ALcomplex a, ALcomplex b)
{
ALcomplex result;
result.Real = a.Real*b.Real - a.Imag*b.Imag;
result.Imag = a.Imag*b.Real + a.Real*b.Imag;
return result;
}
/**
* Iterative implementation of 2-radix FFT (In-place algorithm). Sign = -1 is
* FFT and 1 is iFFT (inverse). Fills FFTBuffer[0...FFTSize-1] with the
* Discrete Fourier Transform (DFT) of the time domain data stored in
* FFTBuffer[0...FFTSize-1]. FFTBuffer is an array of complex numbers, FFTSize
* MUST BE power of two.
*/
void complex_fft(ALcomplex *FFTBuffer, ALsizei FFTSize, ALdouble Sign);
/**
*Calculate the complex helical sequence (or discrete-time analytical signal)
*of the given input using the discrete Hilbert transform (In-place algorithm).
*Fills InOutBuffer[0...size-1] with the discrete-time analytical signal stored
*in InOutBuffer[0...size-1]. InOutBuffer is an array of complex numbers,
*size MUST BE power of two.
*/
void hilbert(ALsizei size, ALcomplex *InOutBuffer );
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* ALCOMPLEX_H */
|