1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
#ifndef AL_MALLOC_H
#define AL_MALLOC_H
#include <algorithm>
#include <cstddef>
#include <iterator>
#include <limits>
#include <memory>
#include <new>
#include <type_traits>
#include <utility>
#include "pragmadefs.h"
void al_free(void *ptr) noexcept;
[[gnu::alloc_align(1), gnu::alloc_size(2), gnu::malloc]]
void *al_malloc(size_t alignment, size_t size);
[[gnu::alloc_align(1), gnu::alloc_size(2), gnu::malloc]]
void *al_calloc(size_t alignment, size_t size);
#define DISABLE_ALLOC() \
void *operator new(size_t) = delete; \
void *operator new[](size_t) = delete; \
void operator delete(void*) noexcept = delete; \
void operator delete[](void*) noexcept = delete;
#define DEF_NEWDEL(T) \
void *operator new(size_t size) \
{ \
static_assert(&operator new == &T::operator new, \
"Incorrect container type specified"); \
if(void *ret{al_malloc(alignof(T), size)}) \
return ret; \
throw std::bad_alloc(); \
} \
void *operator new[](size_t size) { return operator new(size); } \
void operator delete(void *block) noexcept { al_free(block); } \
void operator delete[](void *block) noexcept { operator delete(block); }
#define DEF_PLACE_NEWDEL() \
void *operator new(size_t /*size*/, void *ptr) noexcept { return ptr; } \
void *operator new[](size_t /*size*/, void *ptr) noexcept { return ptr; } \
void operator delete(void *block, void*) noexcept { al_free(block); } \
void operator delete(void *block) noexcept { al_free(block); } \
void operator delete[](void *block, void*) noexcept { al_free(block); } \
void operator delete[](void *block) noexcept { al_free(block); }
enum FamCount : size_t { };
#define DEF_FAM_NEWDEL(T, FamMem) \
static constexpr size_t Sizeof(size_t count) noexcept \
{ \
static_assert(&Sizeof == &T::Sizeof, \
"Incorrect container type specified"); \
return std::max(decltype(FamMem)::Sizeof(count, offsetof(T, FamMem)), \
sizeof(T)); \
} \
\
void *operator new(size_t /*size*/, FamCount count) \
{ \
if(void *ret{al_malloc(alignof(T), T::Sizeof(count))}) \
return ret; \
throw std::bad_alloc(); \
} \
void *operator new[](size_t /*size*/) = delete; \
void operator delete(void *block, FamCount) { al_free(block); } \
void operator delete(void *block) noexcept { al_free(block); } \
void operator delete[](void* /*block*/) = delete;
namespace al {
template<typename T, std::size_t alignment=alignof(T)>
struct allocator {
using value_type = T;
using reference = T&;
using const_reference = const T&;
using pointer = T*;
using const_pointer = const T*;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using is_always_equal = std::true_type;
template<typename U>
struct rebind {
using other = allocator<U, (alignment<alignof(U))?alignof(U):alignment>;
};
constexpr explicit allocator() noexcept = default;
template<typename U, std::size_t N>
constexpr explicit allocator(const allocator<U,N>&) noexcept { }
T *allocate(std::size_t n)
{
if(n > std::numeric_limits<std::size_t>::max()/sizeof(T)) throw std::bad_alloc();
if(auto p = al_malloc(alignment, n*sizeof(T))) return static_cast<T*>(p);
throw std::bad_alloc();
}
void deallocate(T *p, std::size_t) noexcept { al_free(p); }
};
template<typename T, std::size_t N, typename U, std::size_t M>
constexpr bool operator==(const allocator<T,N>&, const allocator<U,M>&) noexcept { return true; }
template<typename T, std::size_t N, typename U, std::size_t M>
constexpr bool operator!=(const allocator<T,N>&, const allocator<U,M>&) noexcept { return false; }
namespace detail_ {
template<typename... Ts>
using void_t = void;
template<typename T, typename = void>
constexpr bool has_to_address = false;
template<typename T>
constexpr bool has_to_address<T,
void_t<decltype(std::pointer_traits<T>::to_address(std::declval<const T&>()))>> = true;
} // namespace detail_
template<typename T>
constexpr T *to_address(T *p) noexcept
{
static_assert(!std::is_function<T>::value, "Can't be a function type");
return p;
}
template<typename T, std::enable_if_t<detail_::has_to_address<T>,bool> = true>
constexpr auto to_address(const T& p) noexcept
{ return std::pointer_traits<T>::to_address(p); }
template<typename T, std::enable_if_t<!detail_::has_to_address<T>,bool> = true>
constexpr auto to_address(const T& p) noexcept
{ return to_address(p.operator->()); }
template<typename T, typename ...Args>
constexpr T* construct_at(T *ptr, Args&& ...args)
noexcept(std::is_nothrow_constructible<T, Args...>::value)
{ return ::new(static_cast<void*>(ptr)) T{std::forward<Args>(args)...}; }
/* At least VS 2015 complains that 'ptr' is unused when the given type's
* destructor is trivial (a no-op). So disable that warning for this call.
*/
DIAGNOSTIC_PUSH
msc_pragma(warning(disable : 4100))
template<typename T>
constexpr std::enable_if_t<!std::is_array<T>::value>
destroy_at(T *ptr) noexcept(std::is_nothrow_destructible<T>::value)
{ ptr->~T(); }
DIAGNOSTIC_POP
template<typename T>
constexpr std::enable_if_t<std::is_array<T>::value>
destroy_at(T *ptr) noexcept(std::is_nothrow_destructible<std::remove_all_extents_t<T>>::value)
{
for(auto &elem : *ptr)
al::destroy_at(std::addressof(elem));
}
template<typename T>
constexpr void destroy(T first, T end) noexcept(noexcept(al::destroy_at(std::addressof(*first))))
{
while(first != end)
{
al::destroy_at(std::addressof(*first));
++first;
}
}
template<typename T, typename N>
constexpr std::enable_if_t<std::is_integral<N>::value,T>
destroy_n(T first, N count) noexcept(noexcept(al::destroy_at(std::addressof(*first))))
{
if(count != 0)
{
do {
al::destroy_at(std::addressof(*first));
++first;
} while(--count);
}
return first;
}
template<typename T, typename N>
inline std::enable_if_t<std::is_integral<N>::value,
T> uninitialized_default_construct_n(T first, N count)
{
using ValueT = typename std::iterator_traits<T>::value_type;
T current{first};
if(count != 0)
{
try {
do {
::new(static_cast<void*>(std::addressof(*current))) ValueT;
++current;
} while(--count);
}
catch(...) {
al::destroy(first, current);
throw;
}
}
return current;
}
/* Storage for flexible array data. This is trivially destructible if type T is
* trivially destructible.
*/
template<typename T, size_t alignment, bool = std::is_trivially_destructible<T>::value>
struct FlexArrayStorage {
const size_t mSize;
union {
char mDummy;
alignas(alignment) T mArray[1];
};
static constexpr size_t Sizeof(size_t count, size_t base=0u) noexcept
{
const size_t len{sizeof(T)*count};
return std::max(offsetof(FlexArrayStorage,mArray)+len, sizeof(FlexArrayStorage)) + base;
}
FlexArrayStorage(size_t size) : mSize{size}
{ al::uninitialized_default_construct_n(mArray, mSize); }
~FlexArrayStorage() = default;
FlexArrayStorage(const FlexArrayStorage&) = delete;
FlexArrayStorage& operator=(const FlexArrayStorage&) = delete;
};
template<typename T, size_t alignment>
struct FlexArrayStorage<T,alignment,false> {
const size_t mSize;
union {
char mDummy;
alignas(alignment) T mArray[1];
};
static constexpr size_t Sizeof(size_t count, size_t base) noexcept
{
const size_t len{sizeof(T)*count};
return std::max(offsetof(FlexArrayStorage,mArray)+len, sizeof(FlexArrayStorage)) + base;
}
FlexArrayStorage(size_t size) : mSize{size}
{ al::uninitialized_default_construct_n(mArray, mSize); }
~FlexArrayStorage() { al::destroy_n(mArray, mSize); }
FlexArrayStorage(const FlexArrayStorage&) = delete;
FlexArrayStorage& operator=(const FlexArrayStorage&) = delete;
};
/* A flexible array type. Used either standalone or at the end of a parent
* struct, with placement new, to have a run-time-sized array that's embedded
* with its size.
*/
template<typename T, size_t alignment=alignof(T)>
struct FlexArray {
using element_type = T;
using value_type = std::remove_cv_t<T>;
using index_type = size_t;
using difference_type = ptrdiff_t;
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using iterator = pointer;
using const_iterator = const_pointer;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using Storage_t_ = FlexArrayStorage<element_type,alignment>;
Storage_t_ mStore;
static constexpr index_type Sizeof(index_type count, index_type base=0u) noexcept
{ return Storage_t_::Sizeof(count, base); }
static std::unique_ptr<FlexArray> Create(index_type count)
{
void *ptr{al_calloc(alignof(FlexArray), Sizeof(count))};
return std::unique_ptr<FlexArray>{al::construct_at(static_cast<FlexArray*>(ptr), count)};
}
FlexArray(index_type size) : mStore{size} { }
~FlexArray() = default;
index_type size() const noexcept { return mStore.mSize; }
bool empty() const noexcept { return mStore.mSize == 0; }
pointer data() noexcept { return mStore.mArray; }
const_pointer data() const noexcept { return mStore.mArray; }
reference operator[](index_type i) noexcept { return mStore.mArray[i]; }
const_reference operator[](index_type i) const noexcept { return mStore.mArray[i]; }
reference front() noexcept { return mStore.mArray[0]; }
const_reference front() const noexcept { return mStore.mArray[0]; }
reference back() noexcept { return mStore.mArray[mStore.mSize-1]; }
const_reference back() const noexcept { return mStore.mArray[mStore.mSize-1]; }
iterator begin() noexcept { return mStore.mArray; }
const_iterator begin() const noexcept { return mStore.mArray; }
const_iterator cbegin() const noexcept { return mStore.mArray; }
iterator end() noexcept { return mStore.mArray + mStore.mSize; }
const_iterator end() const noexcept { return mStore.mArray + mStore.mSize; }
const_iterator cend() const noexcept { return mStore.mArray + mStore.mSize; }
reverse_iterator rbegin() noexcept { return end(); }
const_reverse_iterator rbegin() const noexcept { return end(); }
const_reverse_iterator crbegin() const noexcept { return cend(); }
reverse_iterator rend() noexcept { return begin(); }
const_reverse_iterator rend() const noexcept { return begin(); }
const_reverse_iterator crend() const noexcept { return cbegin(); }
DEF_PLACE_NEWDEL()
};
} // namespace al
#endif /* AL_MALLOC_H */
|