1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
#ifndef AL_FLEXARRAY_H
#define AL_FLEXARRAY_H
#include <algorithm>
#include <cstddef>
#include <stdexcept>
#include <type_traits>
#include "almalloc.h"
#include "alspan.h"
namespace al {
/* Storage for flexible array data. This is trivially destructible if type T is
* trivially destructible.
*/
template<typename T, size_t alignment, bool = std::is_trivially_destructible<T>::value>
struct FlexArrayStorage {
alignas(std::max(alignment, alignof(::al::span<T>))) const ::al::span<T> mData;
static constexpr size_t Sizeof(size_t count, size_t base=0u) noexcept
{ return sizeof(FlexArrayStorage) + sizeof(T)*count + base; }
FlexArrayStorage(size_t size) noexcept(std::is_nothrow_constructible_v<T>)
: mData{::new(static_cast<void*>(this+1)) T[size], size}
{ }
~FlexArrayStorage() = default;
FlexArrayStorage(const FlexArrayStorage&) = delete;
FlexArrayStorage& operator=(const FlexArrayStorage&) = delete;
};
template<typename T, size_t alignment>
struct FlexArrayStorage<T,alignment,false> {
alignas(std::max(alignment, alignof(::al::span<T>))) const ::al::span<T> mData;
static constexpr size_t Sizeof(size_t count, size_t base=0u) noexcept
{ return sizeof(FlexArrayStorage) + sizeof(T)*count + base; }
FlexArrayStorage(size_t size) noexcept(std::is_nothrow_constructible_v<T>)
: mData{::new(static_cast<void*>(this+1)) T[size], size}
{ }
~FlexArrayStorage() { std::destroy(mData.begin(), mData.end()); }
FlexArrayStorage(const FlexArrayStorage&) = delete;
FlexArrayStorage& operator=(const FlexArrayStorage&) = delete;
};
/* A flexible array type. Used either standalone or at the end of a parent
* struct, with placement new, to have a run-time-sized array that's embedded
* with its size.
*/
template<typename T, size_t Align=alignof(T)>
struct FlexArray {
using element_type = T;
using value_type = std::remove_cv_t<T>;
using index_type = size_t;
using difference_type = ptrdiff_t;
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using iterator = pointer;
using const_iterator = const_pointer;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
static constexpr size_t alignment{std::max(alignof(T), Align)};
using Storage_t_ = FlexArrayStorage<element_type,alignment>;
Storage_t_ mStore;
static constexpr index_type Sizeof(index_type count, index_type base=0u) noexcept
{ return Storage_t_::Sizeof(count, base); }
static std::unique_ptr<FlexArray> Create(index_type count)
{ return std::unique_ptr<FlexArray>{new(FamCount{count}) FlexArray{count}}; }
FlexArray(index_type size) noexcept(std::is_nothrow_constructible_v<Storage_t_,index_type>)
: mStore{size}
{ }
~FlexArray() = default;
[[nodiscard]] auto size() const noexcept -> index_type { return mStore.mData.size(); }
[[nodiscard]] auto empty() const noexcept -> bool { return mStore.mData.empty(); }
[[nodiscard]] auto data() noexcept -> pointer { return mStore.mData.data(); }
[[nodiscard]] auto data() const noexcept -> const_pointer { return mStore.mData.data(); }
[[nodiscard]] auto operator[](index_type i) noexcept -> reference { return mStore.mData[i]; }
[[nodiscard]] auto operator[](index_type i) const noexcept -> const_reference { return mStore.mData[i]; }
[[nodiscard]] auto front() noexcept -> reference { return mStore.mData.front(); }
[[nodiscard]] auto front() const noexcept -> const_reference { return mStore.mData.front(); }
[[nodiscard]] auto back() noexcept -> reference { return mStore.mData.back(); }
[[nodiscard]] auto back() const noexcept -> const_reference { return mStore.mData.back(); }
[[nodiscard]] auto begin() noexcept -> iterator { return mStore.mData.begin(); }
[[nodiscard]] auto begin() const noexcept -> const_iterator { return mStore.mData.begin(); }
[[nodiscard]] auto cbegin() const noexcept -> const_iterator { return mStore.mData.cbegin(); }
[[nodiscard]] auto end() noexcept -> iterator { return mStore.mData.end(); }
[[nodiscard]] auto end() const noexcept -> const_iterator { return mStore.mData.end(); }
[[nodiscard]] auto cend() const noexcept -> const_iterator { return mStore.mData.cend(); }
[[nodiscard]] auto rbegin() noexcept -> reverse_iterator { return end(); }
[[nodiscard]] auto rbegin() const noexcept -> const_reverse_iterator { return end(); }
[[nodiscard]] auto crbegin() const noexcept -> const_reverse_iterator { return cend(); }
[[nodiscard]] auto rend() noexcept -> reverse_iterator { return begin(); }
[[nodiscard]] auto rend() const noexcept -> const_reverse_iterator { return begin(); }
[[nodiscard]] auto crend() const noexcept -> const_reverse_iterator { return cbegin(); }
gsl::owner<void*> operator new(size_t, FamCount count)
{ return ::operator new[](Sizeof(count), std::align_val_t{alignof(FlexArray)}); }
void operator delete(gsl::owner<void*> block, FamCount) noexcept
{ ::operator delete[](block, std::align_val_t{alignof(FlexArray)}); }
void operator delete(gsl::owner<void*> block) noexcept
{ ::operator delete[](block, std::align_val_t{alignof(FlexArray)}); }
void *operator new(size_t size) = delete;
void *operator new[](size_t size) = delete;
void operator delete[](void *block) = delete;
};
} // namespace al
#endif /* AL_FLEXARRAY_H */
|