1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
#ifndef CORE_AMBIDEFS_H
#define CORE_AMBIDEFS_H
#include <array>
#include <stddef.h>
#include <stdint.h>
#include "alnumbers.h"
using uint = unsigned int;
/* The maximum number of Ambisonics channels. For a given order (o), the size
* needed will be (o+1)**2, thus zero-order has 1, first-order has 4, second-
* order has 9, third-order has 16, and fourth-order has 25.
*/
constexpr uint8_t MaxAmbiOrder{3};
constexpr inline size_t AmbiChannelsFromOrder(size_t order) noexcept
{ return (order+1) * (order+1); }
constexpr size_t MaxAmbiChannels{AmbiChannelsFromOrder(MaxAmbiOrder)};
/* A bitmask of ambisonic channels for 0 to 4th order. This only specifies up
* to 4th order, which is the highest order a 32-bit mask value can specify (a
* 64-bit mask could handle up to 7th order).
*/
constexpr uint Ambi0OrderMask{0x00000001};
constexpr uint Ambi1OrderMask{0x0000000f};
constexpr uint Ambi2OrderMask{0x000001ff};
constexpr uint Ambi3OrderMask{0x0000ffff};
constexpr uint Ambi4OrderMask{0x01ffffff};
/* A bitmask of ambisonic channels with height information. If none of these
* channels are used/needed, there's no height (e.g. with most surround sound
* speaker setups). This is ACN ordering, with bit 0 being ACN 0, etc.
*/
constexpr uint AmbiPeriphonicMask{0xfe7ce4};
/* The maximum number of ambisonic channels for 2D (non-periphonic)
* representation. This is 2 per each order above zero-order, plus 1 for zero-
* order. Or simply, o*2 + 1.
*/
constexpr inline size_t Ambi2DChannelsFromOrder(size_t order) noexcept
{ return order*2 + 1; }
constexpr size_t MaxAmbi2DChannels{Ambi2DChannelsFromOrder(MaxAmbiOrder)};
/* NOTE: These are scale factors as applied to Ambisonics content. Decoder
* coefficients should be divided by these values to get proper scalings.
*/
struct AmbiScale {
static auto& FromN3D() noexcept
{
static constexpr const std::array<float,MaxAmbiChannels> ret{{
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f
}};
return ret;
}
static auto& FromSN3D() noexcept
{
static constexpr const std::array<float,MaxAmbiChannels> ret{{
1.000000000f, /* ACN 0, sqrt(1) */
1.732050808f, /* ACN 1, sqrt(3) */
1.732050808f, /* ACN 2, sqrt(3) */
1.732050808f, /* ACN 3, sqrt(3) */
2.236067978f, /* ACN 4, sqrt(5) */
2.236067978f, /* ACN 5, sqrt(5) */
2.236067978f, /* ACN 6, sqrt(5) */
2.236067978f, /* ACN 7, sqrt(5) */
2.236067978f, /* ACN 8, sqrt(5) */
2.645751311f, /* ACN 9, sqrt(7) */
2.645751311f, /* ACN 10, sqrt(7) */
2.645751311f, /* ACN 11, sqrt(7) */
2.645751311f, /* ACN 12, sqrt(7) */
2.645751311f, /* ACN 13, sqrt(7) */
2.645751311f, /* ACN 14, sqrt(7) */
2.645751311f, /* ACN 15, sqrt(7) */
}};
return ret;
}
static auto& FromFuMa() noexcept
{
static constexpr const std::array<float,MaxAmbiChannels> ret{{
1.414213562f, /* ACN 0 (W), sqrt(2) */
1.732050808f, /* ACN 1 (Y), sqrt(3) */
1.732050808f, /* ACN 2 (Z), sqrt(3) */
1.732050808f, /* ACN 3 (X), sqrt(3) */
1.936491673f, /* ACN 4 (V), sqrt(15)/2 */
1.936491673f, /* ACN 5 (T), sqrt(15)/2 */
2.236067978f, /* ACN 6 (R), sqrt(5) */
1.936491673f, /* ACN 7 (S), sqrt(15)/2 */
1.936491673f, /* ACN 8 (U), sqrt(15)/2 */
2.091650066f, /* ACN 9 (Q), sqrt(35/8) */
1.972026594f, /* ACN 10 (O), sqrt(35)/3 */
2.231093404f, /* ACN 11 (M), sqrt(224/45) */
2.645751311f, /* ACN 12 (K), sqrt(7) */
2.231093404f, /* ACN 13 (L), sqrt(224/45) */
1.972026594f, /* ACN 14 (N), sqrt(35)/3 */
2.091650066f, /* ACN 15 (P), sqrt(35/8) */
}};
return ret;
}
static auto& FromUHJ() noexcept
{
static constexpr const std::array<float,MaxAmbiChannels> ret{{
1.000000000f, /* ACN 0 (W), sqrt(1) */
1.224744871f, /* ACN 1 (Y), sqrt(3/2) */
1.224744871f, /* ACN 2 (Z), sqrt(3/2) */
1.224744871f, /* ACN 3 (X), sqrt(3/2) */
/* Higher orders not relevant for UHJ. */
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
}};
return ret;
}
/* Retrieves per-order HF scaling factors for "upsampling" ambisonic data. */
static std::array<float,MaxAmbiOrder+1> GetHFOrderScales(const uint order, const bool is3D) noexcept
{
if(order >= 3) return is3D ? DecoderHFScale3O : DecoderHFScale3O2D;
if(order == 2) return is3D ? DecoderHFScale2O : DecoderHFScale2O2D;
return is3D ? DecoderHFScale1O : DecoderHFScale1O2D;
}
static const std::array<float,MaxAmbiOrder+1> DecoderHFScale1O;
static const std::array<float,MaxAmbiOrder+1> DecoderHFScale1O2D;
static const std::array<float,MaxAmbiOrder+1> DecoderHFScale2O;
static const std::array<float,MaxAmbiOrder+1> DecoderHFScale2O2D;
static const std::array<float,MaxAmbiOrder+1> DecoderHFScale3O;
static const std::array<float,MaxAmbiOrder+1> DecoderHFScale3O2D;
static const std::array<std::array<float,MaxAmbiChannels>,4> FirstOrderUp;
static const std::array<std::array<float,MaxAmbiChannels>,4> FirstOrder2DUp;
static const std::array<std::array<float,MaxAmbiChannels>,9> SecondOrderUp;
static const std::array<std::array<float,MaxAmbiChannels>,9> SecondOrder2DUp;
static const std::array<std::array<float,MaxAmbiChannels>,16> ThirdOrderUp;
static const std::array<std::array<float,MaxAmbiChannels>,16> ThirdOrder2DUp;
};
struct AmbiIndex {
static auto& FromFuMa() noexcept
{
static constexpr const std::array<uint8_t,MaxAmbiChannels> ret{{
0, /* W */
3, /* X */
1, /* Y */
2, /* Z */
6, /* R */
7, /* S */
5, /* T */
8, /* U */
4, /* V */
12, /* K */
13, /* L */
11, /* M */
14, /* N */
10, /* O */
15, /* P */
9, /* Q */
}};
return ret;
}
static auto& FromFuMa2D() noexcept
{
static constexpr const std::array<uint8_t,MaxAmbi2DChannels> ret{{
0, /* W */
3, /* X */
1, /* Y */
8, /* U */
4, /* V */
15, /* P */
9, /* Q */
}};
return ret;
}
static auto& FromACN() noexcept
{
static constexpr const std::array<uint8_t,MaxAmbiChannels> ret{{
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15
}};
return ret;
}
static auto& FromACN2D() noexcept
{
static constexpr const std::array<uint8_t,MaxAmbi2DChannels> ret{{
0, 1,3, 4,8, 9,15
}};
return ret;
}
static auto& OrderFromChannel() noexcept
{
static constexpr const std::array<uint8_t,MaxAmbiChannels> ret{{
0, 1,1,1, 2,2,2,2,2, 3,3,3,3,3,3,3,
}};
return ret;
}
static auto& OrderFrom2DChannel() noexcept
{
static constexpr const std::array<uint8_t,MaxAmbi2DChannels> ret{{
0, 1,1, 2,2, 3,3,
}};
return ret;
}
};
/**
* Calculates ambisonic encoder coefficients using the X, Y, and Z direction
* components, which must represent a normalized (unit length) vector.
*
* NOTE: The components use ambisonic coordinates. As a result:
*
* Ambisonic Y = OpenAL -X
* Ambisonic Z = OpenAL Y
* Ambisonic X = OpenAL -Z
*
* The components are ordered such that OpenAL's X, Y, and Z are the first,
* second, and third parameters respectively -- simply negate X and Z.
*/
constexpr auto CalcAmbiCoeffs(const float y, const float z, const float x)
{
const float xx{x*x}, yy{y*y}, zz{z*z}, xy{x*y}, yz{y*z}, xz{x*z};
return std::array<float,MaxAmbiChannels>{{
/* Zeroth-order */
1.0f, /* ACN 0 = 1 */
/* First-order */
al::numbers::sqrt3_v<float> * y, /* ACN 1 = sqrt(3) * Y */
al::numbers::sqrt3_v<float> * z, /* ACN 2 = sqrt(3) * Z */
al::numbers::sqrt3_v<float> * x, /* ACN 3 = sqrt(3) * X */
/* Second-order */
3.872983346e+00f * xy, /* ACN 4 = sqrt(15) * X * Y */
3.872983346e+00f * yz, /* ACN 5 = sqrt(15) * Y * Z */
1.118033989e+00f * (3.0f*zz - 1.0f), /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */
3.872983346e+00f * xz, /* ACN 7 = sqrt(15) * X * Z */
1.936491673e+00f * (xx - yy), /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */
/* Third-order */
2.091650066e+00f * (y*(3.0f*xx - yy)), /* ACN 9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */
1.024695076e+01f * (z*xy), /* ACN 10 = sqrt(105) * Z * X * Y */
1.620185175e+00f * (y*(5.0f*zz - 1.0f)), /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */
1.322875656e+00f * (z*(5.0f*zz - 3.0f)), /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */
1.620185175e+00f * (x*(5.0f*zz - 1.0f)), /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */
5.123475383e+00f * (z*(xx - yy)), /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */
2.091650066e+00f * (x*(xx - 3.0f*yy)), /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */
/* Fourth-order */
/* ACN 16 = sqrt(35)*3/2 * X * Y * (X*X - Y*Y) */
/* ACN 17 = sqrt(35/2)*3/2 * (3*X*X - Y*Y) * Y * Z */
/* ACN 18 = sqrt(5)*3/2 * X * Y * (7*Z*Z - 1) */
/* ACN 19 = sqrt(5/2)*3/2 * Y * Z * (7*Z*Z - 3) */
/* ACN 20 = 3/8 * (35*Z*Z*Z*Z - 30*Z*Z + 3) */
/* ACN 21 = sqrt(5/2)*3/2 * X * Z * (7*Z*Z - 3) */
/* ACN 22 = sqrt(5)*3/4 * (X*X - Y*Y) * (7*Z*Z - 1) */
/* ACN 23 = sqrt(35/2)*3/2 * (X*X - 3*Y*Y) * X * Z */
/* ACN 24 = sqrt(35)*3/8 * (X*X*X*X - 6*X*X*Y*Y + Y*Y*Y*Y) */
}};
}
#endif /* CORE_AMBIDEFS_H */
|