aboutsummaryrefslogtreecommitdiffstats
path: root/core/bsinc_tables.cpp
blob: 41102e9abfd0f9173abed812d6e3ac0c196a7b12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

#include "bsinc_tables.h"

#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <limits>
#include <memory>
#include <stddef.h>
#include <stdexcept>

#include "alnumbers.h"
#include "alnumeric.h"
#include "bsinc_defs.h"
#include "resampler_limits.h"


namespace {

using uint = unsigned int;

#if __cpp_lib_math_special_functions >= 201603L
using std::cyl_bessel_i;

#else

/* The zero-order modified Bessel function of the first kind, used for the
 * Kaiser window.
 *
 *   I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k)
 *          = sum_{k=0}^inf ((x / 2)^k / k!)^2
 *
 * This implementation only handles nu = 0, and isn't the most precise (it
 * starts with the largest value and accumulates successively smaller values,
 * compounding the rounding and precision error), but it's good enough.
 */
template<typename T, typename U>
U cyl_bessel_i(T nu, U x)
{
    if(nu != T{0})
        throw std::runtime_error{"cyl_bessel_i: nu != 0"};

    /* Start at k=1 since k=0 is trivial. */
    const double x2{x/2.0};
    double term{1.0};
    double sum{1.0};
    int k{1};

    /* Let the integration converge until the term of the sum is no longer
     * significant.
     */
    double last_sum{};
    do {
        const double y{x2 / k};
        ++k;
        last_sum = sum;
        term *= y * y;
        sum += term;
    } while(sum != last_sum);
    return static_cast<U>(sum);
}
#endif

/* This is the normalized cardinal sine (sinc) function.
 *
 *   sinc(x) = { 1,                   x = 0
 *             { sin(pi x) / (pi x),  otherwise.
 */
constexpr double Sinc(const double x)
{
    constexpr double epsilon{std::numeric_limits<double>::epsilon()};
    if(!(x > epsilon || x < -epsilon))
        return 1.0;
    return std::sin(al::numbers::pi*x) / (al::numbers::pi*x);
}

/* Calculate a Kaiser window from the given beta value and a normalized k
 * [-1, 1].
 *
 *   w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B),  -1 <= k <= 1
 *          { 0,                              elsewhere.
 *
 * Where k can be calculated as:
 *
 *   k = i / l,         where -l <= i <= l.
 *
 * or:
 *
 *   k = 2 i / M - 1,   where 0 <= i <= M.
 */
constexpr double Kaiser(const double beta, const double k, const double besseli_0_beta)
{
    if(!(k >= -1.0 && k <= 1.0))
        return 0.0;
    return cyl_bessel_i(0, beta * std::sqrt(1.0 - k*k)) / besseli_0_beta;
}

/* Calculates the (normalized frequency) transition width of the Kaiser window.
 * Rejection is in dB.
 */
constexpr double CalcKaiserWidth(const double rejection, const uint order) noexcept
{
    if(rejection > 21.19)
        return (rejection - 7.95) / (2.285 * al::numbers::pi*2.0 * order);
    /* This enforces a minimum rejection of just above 21.18dB */
    return 5.79 / (al::numbers::pi*2.0 * order);
}

/* Calculates the beta value of the Kaiser window. Rejection is in dB. */
constexpr double CalcKaiserBeta(const double rejection)
{
    if(rejection > 50.0)
        return 0.1102 * (rejection-8.7);
    else if(rejection >= 21.0)
        return (0.5842 * std::pow(rejection-21.0, 0.4)) + (0.07886 * (rejection-21.0));
    return 0.0;
}


struct BSincHeader {
    double width{};
    double beta{};
    double scaleBase{};

    uint a[BSincScaleCount]{};
    uint total_size{};

    constexpr BSincHeader(uint Rejection, uint Order) noexcept
    {
        width = CalcKaiserWidth(Rejection, Order);
        beta = CalcKaiserBeta(Rejection);
        scaleBase = width / 2.0;

        uint num_points{Order+1};
        for(uint si{0};si < BSincScaleCount;++si)
        {
            const double scale{lerpd(scaleBase, 1.0, (si+1) / double{BSincScaleCount})};
            const uint a_{std::min(static_cast<uint>(num_points / 2.0 / scale), num_points)};
            const uint m{2 * a_};

            a[si] = a_;
            total_size += 4 * BSincPhaseCount * ((m+3) & ~3u);
        }
    }
};

/* 11th and 23rd order filters (12 and 24-point respectively) with a 60dB drop
 * at nyquist. Each filter will scale up the order when downsampling, to 23rd
 * and 47th order respectively.
 */
constexpr BSincHeader bsinc12_hdr{60, 11};
constexpr BSincHeader bsinc24_hdr{60, 23};


template<const BSincHeader &hdr>
struct BSincFilterArray {
    alignas(16) std::array<float, hdr.total_size> mTable{};

    BSincFilterArray()
    {
        constexpr uint BSincPointsMax{(hdr.a[0]*2 + 3) & ~3u};
        static_assert(BSincPointsMax <= MaxResamplerPadding, "MaxResamplerPadding is too small");

        using filter_type = double[BSincPhaseCount+1][BSincPointsMax];
        auto filter = std::make_unique<filter_type[]>(BSincScaleCount);

        const double besseli_0_beta{cyl_bessel_i(0, hdr.beta)};

        /* Calculate the Kaiser-windowed Sinc filter coefficients for each
         * scale and phase index.
         */
        for(uint si{0};si < BSincScaleCount;++si)
        {
            const uint m{hdr.a[si] * 2};
            const size_t o{(BSincPointsMax-m) / 2};
            const double scale{lerpd(hdr.scaleBase, 1.0, (si+1) / double{BSincScaleCount})};
            const double cutoff{scale - (hdr.scaleBase * std::max(1.0, scale*2.0))};
            const auto a = static_cast<double>(hdr.a[si]);
            const double l{a - 1.0/BSincPhaseCount};

            /* Do one extra phase index so that the phase delta has a proper
             * target for its last index.
             */
            for(uint pi{0};pi <= BSincPhaseCount;++pi)
            {
                const double phase{std::floor(l) + (pi/double{BSincPhaseCount})};

                for(uint i{0};i < m;++i)
                {
                    const double x{i - phase};
                    filter[si][pi][o+i] = Kaiser(hdr.beta, x/l, besseli_0_beta) * cutoff *
                        Sinc(cutoff*x);
                }
            }
        }

        size_t idx{0};
        for(size_t si{0};si < BSincScaleCount;++si)
        {
            const size_t m{((hdr.a[si]*2) + 3) & ~3u};
            const size_t o{(BSincPointsMax-m) / 2};

            /* Write out each phase index's filter and phase delta for this
             * quality scale.
             */
            for(size_t pi{0};pi < BSincPhaseCount;++pi)
            {
                for(size_t i{0};i < m;++i)
                    mTable[idx++] = static_cast<float>(filter[si][pi][o+i]);

                /* Linear interpolation between phases is simplified by pre-
                 * calculating the delta (b - a) in: x = a + f (b - a)
                 */
                for(size_t i{0};i < m;++i)
                {
                    const double phDelta{filter[si][pi+1][o+i] - filter[si][pi][o+i]};
                    mTable[idx++] = static_cast<float>(phDelta);
                }
            }
            /* Calculate and write out each phase index's filter quality scale
             * deltas. The last scale index doesn't have any scale or scale-
             * phase deltas.
             */
            if(si == BSincScaleCount-1)
            {
                for(size_t i{0};i < BSincPhaseCount*m*2;++i)
                    mTable[idx++] = 0.0f;
            }
            else for(size_t pi{0};pi < BSincPhaseCount;++pi)
            {
                /* Linear interpolation between scales is also simplified.
                 *
                 * Given a difference in the number of points between scales,
                 * the destination points will be 0, thus: x = a + f (-a)
                 */
                for(size_t i{0};i < m;++i)
                {
                    const double scDelta{filter[si+1][pi][o+i] - filter[si][pi][o+i]};
                    mTable[idx++] = static_cast<float>(scDelta);
                }

                /* This last simplification is done to complete the bilinear
                 * equation for the combination of phase and scale.
                 */
                for(size_t i{0};i < m;++i)
                {
                    const double spDelta{(filter[si+1][pi+1][o+i] - filter[si+1][pi][o+i]) -
                        (filter[si][pi+1][o+i] - filter[si][pi][o+i])};
                    mTable[idx++] = static_cast<float>(spDelta);
                }
            }
        }
        assert(idx == hdr.total_size);
    }

    constexpr const BSincHeader &getHeader() const noexcept { return hdr; }
    constexpr const float *getTable() const noexcept { return &mTable.front(); }
};

const BSincFilterArray<bsinc12_hdr> bsinc12_filter{};
const BSincFilterArray<bsinc24_hdr> bsinc24_filter{};

template<typename T>
constexpr BSincTable GenerateBSincTable(const T &filter)
{
    BSincTable ret{};
    const BSincHeader &hdr = filter.getHeader();
    ret.scaleBase = static_cast<float>(hdr.scaleBase);
    ret.scaleRange = static_cast<float>(1.0 / (1.0 - hdr.scaleBase));
    for(size_t i{0};i < BSincScaleCount;++i)
        ret.m[i] = ((hdr.a[i]*2) + 3) & ~3u;
    ret.filterOffset[0] = 0;
    for(size_t i{1};i < BSincScaleCount;++i)
        ret.filterOffset[i] = ret.filterOffset[i-1] + ret.m[i-1]*4*BSincPhaseCount;
    ret.Tab = filter.getTable();
    return ret;
}

} // namespace

const BSincTable gBSinc12{GenerateBSincTable(bsinc12_filter)};
const BSincTable gBSinc24{GenerateBSincTable(bsinc24_filter)};