aboutsummaryrefslogtreecommitdiffstats
path: root/core/voice.cpp
blob: 40f3c6b2bf1218860ad2bc746b4708dde7069ae5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

#include "config.h"

#include "voice.h"

#include <algorithm>
#include <array>
#include <atomic>
#include <cassert>
#include <climits>
#include <cstdint>
#include <iterator>
#include <memory>
#include <new>
#include <stdlib.h>
#include <utility>
#include <vector>

#include "albyte.h"
#include "alnumeric.h"
#include "aloptional.h"
#include "alspan.h"
#include "alstring.h"
#include "ambidefs.h"
#include "async_event.h"
#include "buffer_storage.h"
#include "context.h"
#include "cpu_caps.h"
#include "devformat.h"
#include "device.h"
#include "filters/biquad.h"
#include "filters/nfc.h"
#include "filters/splitter.h"
#include "fmt_traits.h"
#include "logging.h"
#include "mixer.h"
#include "mixer/defs.h"
#include "mixer/hrtfdefs.h"
#include "opthelpers.h"
#include "resampler_limits.h"
#include "ringbuffer.h"
#include "vector.h"
#include "voice_change.h"

struct CTag;
#ifdef HAVE_SSE
struct SSETag;
#endif
#ifdef HAVE_NEON
struct NEONTag;
#endif


static_assert(!(sizeof(DeviceBase::MixerBufferLine)&15),
    "DeviceBase::MixerBufferLine must be a multiple of 16 bytes");
static_assert(!(MaxResamplerEdge&3), "MaxResamplerEdge is not a multiple of 4");

static_assert((BufferLineSize-1)/MaxPitch > 0, "MaxPitch is too large for BufferLineSize!");
static_assert((INT_MAX>>MixerFracBits)/MaxPitch > BufferLineSize,
    "MaxPitch and/or BufferLineSize are too large for MixerFracBits!");

Resampler ResamplerDefault{Resampler::Cubic};

namespace {

using uint = unsigned int;
using namespace std::chrono;

using HrtfMixerFunc = void(*)(const float *InSamples, float2 *AccumSamples, const uint IrSize,
    const MixHrtfFilter *hrtfparams, const size_t BufferSize);
using HrtfMixerBlendFunc = void(*)(const float *InSamples, float2 *AccumSamples,
    const uint IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams,
    const size_t BufferSize);

HrtfMixerFunc MixHrtfSamples{MixHrtf_<CTag>};
HrtfMixerBlendFunc MixHrtfBlendSamples{MixHrtfBlend_<CTag>};

inline MixerOutFunc SelectMixer()
{
#ifdef HAVE_NEON
    if((CPUCapFlags&CPU_CAP_NEON))
        return Mix_<NEONTag>;
#endif
#ifdef HAVE_SSE
    if((CPUCapFlags&CPU_CAP_SSE))
        return Mix_<SSETag>;
#endif
    return Mix_<CTag>;
}

inline MixerOneFunc SelectMixerOne()
{
#ifdef HAVE_NEON
    if((CPUCapFlags&CPU_CAP_NEON))
        return Mix_<NEONTag>;
#endif
#ifdef HAVE_SSE
    if((CPUCapFlags&CPU_CAP_SSE))
        return Mix_<SSETag>;
#endif
    return Mix_<CTag>;
}

inline HrtfMixerFunc SelectHrtfMixer()
{
#ifdef HAVE_NEON
    if((CPUCapFlags&CPU_CAP_NEON))
        return MixHrtf_<NEONTag>;
#endif
#ifdef HAVE_SSE
    if((CPUCapFlags&CPU_CAP_SSE))
        return MixHrtf_<SSETag>;
#endif
    return MixHrtf_<CTag>;
}

inline HrtfMixerBlendFunc SelectHrtfBlendMixer()
{
#ifdef HAVE_NEON
    if((CPUCapFlags&CPU_CAP_NEON))
        return MixHrtfBlend_<NEONTag>;
#endif
#ifdef HAVE_SSE
    if((CPUCapFlags&CPU_CAP_SSE))
        return MixHrtfBlend_<SSETag>;
#endif
    return MixHrtfBlend_<CTag>;
}

} // namespace

void Voice::InitMixer(al::optional<std::string> resampler)
{
    if(resampler)
    {
        struct ResamplerEntry {
            const char name[16];
            const Resampler resampler;
        };
        constexpr ResamplerEntry ResamplerList[]{
            { "none", Resampler::Point },
            { "point", Resampler::Point },
            { "linear", Resampler::Linear },
            { "cubic", Resampler::Cubic },
            { "bsinc12", Resampler::BSinc12 },
            { "fast_bsinc12", Resampler::FastBSinc12 },
            { "bsinc24", Resampler::BSinc24 },
            { "fast_bsinc24", Resampler::FastBSinc24 },
        };

        const char *str{resampler->c_str()};
        if(al::strcasecmp(str, "bsinc") == 0)
        {
            WARN("Resampler option \"%s\" is deprecated, using bsinc12\n", str);
            str = "bsinc12";
        }
        else if(al::strcasecmp(str, "sinc4") == 0 || al::strcasecmp(str, "sinc8") == 0)
        {
            WARN("Resampler option \"%s\" is deprecated, using cubic\n", str);
            str = "cubic";
        }

        auto iter = std::find_if(std::begin(ResamplerList), std::end(ResamplerList),
            [str](const ResamplerEntry &entry) -> bool
            { return al::strcasecmp(str, entry.name) == 0; });
        if(iter == std::end(ResamplerList))
            ERR("Invalid resampler: %s\n", str);
        else
            ResamplerDefault = iter->resampler;
    }

    MixSamplesOut = SelectMixer();
    MixSamplesOne = SelectMixerOne();
    MixHrtfBlendSamples = SelectHrtfBlendMixer();
    MixHrtfSamples = SelectHrtfMixer();
}


namespace {

/* IMA ADPCM Stepsize table */
constexpr int IMAStep_size[89] = {
       7,    8,    9,   10,   11,   12,   13,   14,   16,   17,   19,
      21,   23,   25,   28,   31,   34,   37,   41,   45,   50,   55,
      60,   66,   73,   80,   88,   97,  107,  118,  130,  143,  157,
     173,  190,  209,  230,  253,  279,  307,  337,  371,  408,  449,
     494,  544,  598,  658,  724,  796,  876,  963, 1060, 1166, 1282,
    1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660,
    4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493,10442,
   11487,12635,13899,15289,16818,18500,20350,22358,24633,27086,29794,
   32767
};

/* IMA4 ADPCM Codeword decode table */
constexpr int IMA4Codeword[16] = {
    1, 3, 5, 7, 9, 11, 13, 15,
   -1,-3,-5,-7,-9,-11,-13,-15,
};

/* IMA4 ADPCM Step index adjust decode table */
constexpr int IMA4Index_adjust[16] = {
   -1,-1,-1,-1, 2, 4, 6, 8,
   -1,-1,-1,-1, 2, 4, 6, 8
};

/* MSADPCM Adaption table */
constexpr int MSADPCMAdaption[16] = {
    230, 230, 230, 230, 307, 409, 512, 614,
    768, 614, 512, 409, 307, 230, 230, 230
};

/* MSADPCM Adaption Coefficient tables */
constexpr int MSADPCMAdaptionCoeff[7][2] = {
    { 256,    0 },
    { 512, -256 },
    {   0,    0 },
    { 192,   64 },
    { 240,    0 },
    { 460, -208 },
    { 392, -232 }
};


void SendSourceStoppedEvent(ContextBase *context, uint id)
{
    RingBuffer *ring{context->mAsyncEvents.get()};
    auto evt_vec = ring->getWriteVector();
    if(evt_vec.first.len < 1) return;

    AsyncEvent *evt{al::construct_at(reinterpret_cast<AsyncEvent*>(evt_vec.first.buf),
        AsyncEvent::SourceStateChange)};
    evt->u.srcstate.id = id;
    evt->u.srcstate.state = AsyncEvent::SrcState::Stop;

    ring->writeAdvance(1);
}


const float *DoFilters(BiquadFilter &lpfilter, BiquadFilter &hpfilter, float *dst,
    const al::span<const float> src, int type)
{
    switch(type)
    {
    case AF_None:
        lpfilter.clear();
        hpfilter.clear();
        break;

    case AF_LowPass:
        lpfilter.process(src, dst);
        hpfilter.clear();
        return dst;
    case AF_HighPass:
        lpfilter.clear();
        hpfilter.process(src, dst);
        return dst;

    case AF_BandPass:
        DualBiquad{lpfilter, hpfilter}.process(src, dst);
        return dst;
    }
    return src.data();
}


template<FmtType Type>
inline void LoadSamples(float *RESTRICT dstSamples, const al::byte *src, const size_t srcChan,
    const size_t srcOffset, const size_t srcStep, const size_t /*samplesPerBlock*/,
    const size_t samplesToLoad) noexcept
{
    constexpr size_t sampleSize{sizeof(typename al::FmtTypeTraits<Type>::Type)};
    auto s = src + (srcOffset*srcStep + srcChan)*sampleSize;

    al::LoadSampleArray<Type>(dstSamples, s, srcStep, samplesToLoad);
}

template<>
inline void LoadSamples<FmtIMA4>(float *RESTRICT dstSamples, const al::byte *src,
    const size_t srcChan, const size_t srcOffset, const size_t srcStep,
    const size_t samplesPerBlock, const size_t samplesToLoad) noexcept
{
    const size_t blockBytes{((samplesPerBlock-1)/2 + 4)*srcStep};

    /* Skip to the ADPCM block containing the srcOffset sample. */
    src += srcOffset/samplesPerBlock*blockBytes;
    /* Calculate how many samples need to be skipped in the block. */
    size_t skip{srcOffset % samplesPerBlock};

    /* NOTE: This could probably be optimized better. */
    size_t wrote{0};
    do {
        /* Each IMA4 block starts with a signed 16-bit sample, and a signed
         * 16-bit table index. The table index needs to be clamped.
         */
        int sample{src[srcChan*4] | (src[srcChan*4 + 1] << 8)};
        int index{src[srcChan*4 + 2] | (src[srcChan*4 + 3] << 8)};

        sample = (sample^0x8000) - 32768;
        index = clampi((index^0x8000) - 32768, 0, al::size(IMAStep_size)-1);

        if(skip == 0)
        {
            dstSamples[wrote++] = static_cast<float>(sample) / 32768.0f;
            if(wrote == samplesToLoad) return;
        }
        else
            --skip;

        auto decode_sample = [&sample,&index](const uint nibble)
        {
            sample += IMA4Codeword[nibble] * IMAStep_size[index] / 8;
            sample = clampi(sample, -32768, 32767);

            index += IMA4Index_adjust[nibble];
            index = clampi(index, 0, al::size(IMAStep_size)-1);

            return sample;
        };

        /* The rest of the block is arranged as a series of nibbles, contained
         * in 4 *bytes* per channel interleaved. So every 8 nibbles we need to
         * skip 4 bytes per channel to get the next nibbles for this channel.
         *
         * First, decode the samples that we need to skip in the block (will
         * always be less than the block size). They need to be decoded despite
         * being ignored for proper state on the remaining samples.
         */
        const al::byte *nibbleData{src + (srcStep+srcChan)*4};
        size_t nibbleOffset{0};
        const size_t startOffset{skip + 1};
        for(;skip;--skip)
        {
            const size_t byteShift{(nibbleOffset&1) * 4};
            const size_t wordOffset{(nibbleOffset>>1) & ~size_t{3}};
            const size_t byteOffset{wordOffset*srcStep + ((nibbleOffset>>1)&3u)};
            ++nibbleOffset;

            std::ignore = decode_sample((nibbleData[byteOffset]>>byteShift) & 15u);
        }

        /* Second, decode the rest of the block and write to the output, until
         * the end of the block or the end of output.
         */
        const size_t todo{minz(samplesPerBlock-startOffset, samplesToLoad-wrote)};
        for(size_t i{0};i < todo;++i)
        {
            const size_t byteShift{(nibbleOffset&1) * 4};
            const size_t wordOffset{(nibbleOffset>>1) & ~size_t{3}};
            const size_t byteOffset{wordOffset*srcStep + ((nibbleOffset>>1)&3u)};
            ++nibbleOffset;

            const int result{decode_sample((nibbleData[byteOffset]>>byteShift) & 15u)};
            dstSamples[wrote++] = static_cast<float>(result) / 32768.0f;
        }
        if(wrote == samplesToLoad)
            return;

        src += blockBytes;
    } while(true);
}

template<>
inline void LoadSamples<FmtMSADPCM>(float *RESTRICT dstSamples, const al::byte *src,
    const size_t srcChan, const size_t srcOffset, const size_t srcStep,
    const size_t samplesPerBlock, const size_t samplesToLoad) noexcept
{
    const size_t blockBytes{((samplesPerBlock-2)/2 + 7)*srcStep};

    src += srcOffset/samplesPerBlock*blockBytes;
    size_t skip{srcOffset % samplesPerBlock};

    size_t wrote{0};
    do {
        /* Each MS ADPCM block starts with an 8-bit block predictor, used to
         * dictate how the two sample history values are mixed with the decoded
         * sample, and an initial signed 16-bit delta value which scales the
         * nibble sample value. This is followed by the two initial 16-bit
         * sample history values.
         */
        const al::byte *input{src};
        uint8_t blockpred{std::min(input[srcChan], uint8_t{8})};
        input += srcStep;
        int delta{input[2*srcChan + 0] | (input[2*srcChan + 1] << 8)};
        input += srcStep*2;

        int sampleHistory[2]{};
        sampleHistory[0] = input[2*srcChan + 0] | (input[2*srcChan + 1]<<8);
        input += srcStep*2;
        sampleHistory[1] = input[2*srcChan + 0] | (input[2*srcChan + 1]<<8);
        input += srcStep*2;

        delta = (delta^0x8000) - 32768;
        sampleHistory[0] = (sampleHistory[0]^0x8000) - 32768;
        sampleHistory[1] = (sampleHistory[1]^0x8000) - 32768;

        /* The second history sample is "older", so it's the first to be
         * written out.
         */
        if(skip == 0)
        {
            dstSamples[wrote++] = static_cast<float>(sampleHistory[1]) / 32768.0f;
            if(wrote == samplesToLoad) return;
            dstSamples[wrote++] = static_cast<float>(sampleHistory[0]) / 32768.0f;
            if(wrote == samplesToLoad) return;
        }
        else if(skip == 1)
        {
            --skip;
            dstSamples[wrote++] = static_cast<float>(sampleHistory[0]) / 32768.0f;
            if(wrote == samplesToLoad) return;
        }
        else
            skip -= 2;

        auto decode_sample = [&sampleHistory,&delta,blockpred](const int nibble)
        {
            int pred{(sampleHistory[0]*MSADPCMAdaptionCoeff[blockpred][0] +
                sampleHistory[1]*MSADPCMAdaptionCoeff[blockpred][1]) / 256};
            pred += ((nibble^0x08) - 0x08) * delta;
            pred  = clampi(pred, -32768, 32767);

            sampleHistory[1] = sampleHistory[0];
            sampleHistory[0] = pred;

            delta = (MSADPCMAdaption[nibble] * delta) / 256;
            delta = maxi(16, delta);

            return pred;
        };

        /* The rest of the block is a series of nibbles, interleaved per-
         * channel. First, skip samples.
         */
        const size_t startOffset{skip + 2};
        size_t nibbleOffset{srcChan};
        for(;skip;--skip)
        {
            const size_t byteOffset{nibbleOffset>>1};
            const size_t byteShift{((nibbleOffset&1)^1) * 4};
            nibbleOffset += srcStep;

            std::ignore = decode_sample((input[byteOffset]>>byteShift) & 15);
        }

        /* Now decode the rest of the block, until the end of the block or the
         * dst buffer is filled.
         */
        const size_t todo{minz(samplesPerBlock-startOffset, samplesToLoad-wrote)};
        for(size_t j{0};j < todo;++j)
        {
            const size_t byteOffset{nibbleOffset>>1};
            const size_t byteShift{((nibbleOffset&1)^1) * 4};
            nibbleOffset += srcStep;

            const int sample{decode_sample((input[byteOffset]>>byteShift) & 15)};
            dstSamples[wrote++] = static_cast<float>(sample) / 32768.0f;
        }
        if(wrote == samplesToLoad)
            return;

        src += blockBytes;
    } while(true);
}

void LoadSamples(float *dstSamples, const al::byte *src, const size_t srcChan,
    const size_t srcOffset, const FmtType srcType, const size_t srcStep,
    const size_t samplesPerBlock, const size_t samplesToLoad) noexcept
{
#define HANDLE_FMT(T) case T:                                                 \
    LoadSamples<T>(dstSamples, src, srcChan, srcOffset, srcStep,              \
        samplesPerBlock, samplesToLoad);                                      \
    break

    switch(srcType)
    {
    HANDLE_FMT(FmtUByte);
    HANDLE_FMT(FmtShort);
    HANDLE_FMT(FmtFloat);
    HANDLE_FMT(FmtDouble);
    HANDLE_FMT(FmtMulaw);
    HANDLE_FMT(FmtAlaw);
    HANDLE_FMT(FmtIMA4);
    HANDLE_FMT(FmtMSADPCM);
    }
#undef HANDLE_FMT
}

void LoadBufferStatic(VoiceBufferItem *buffer, VoiceBufferItem *bufferLoopItem,
    const size_t dataPosInt, const FmtType sampleType, const size_t srcChannel,
    const size_t srcStep, size_t samplesLoaded, const size_t samplesToLoad,
    float *voiceSamples)
{
    if(!bufferLoopItem)
    {
        /* Load what's left to play from the buffer */
        if(buffer->mSampleLen > dataPosInt) [[likely]]
        {
            const size_t buffer_remaining{buffer->mSampleLen - dataPosInt};
            const size_t remaining{minz(samplesToLoad-samplesLoaded, buffer_remaining)};
            LoadSamples(voiceSamples+samplesLoaded, buffer->mSamples, srcChannel, dataPosInt,
                sampleType, srcStep, buffer->mBlockAlign, remaining);
            samplesLoaded += remaining;
        }

        if(const size_t toFill{samplesToLoad - samplesLoaded})
        {
            auto srcsamples = voiceSamples + samplesLoaded;
            std::fill_n(srcsamples, toFill, *(srcsamples-1));
        }
    }
    else
    {
        const size_t loopStart{buffer->mLoopStart};
        const size_t loopEnd{buffer->mLoopEnd};
        ASSUME(loopEnd > loopStart);

        const size_t intPos{(dataPosInt < loopEnd) ? dataPosInt
            : (((dataPosInt-loopStart)%(loopEnd-loopStart)) + loopStart)};

        /* Load what's left of this loop iteration */
        const size_t remaining{minz(samplesToLoad-samplesLoaded, loopEnd-dataPosInt)};
        LoadSamples(voiceSamples+samplesLoaded, buffer->mSamples, srcChannel, intPos, sampleType,
            srcStep, buffer->mBlockAlign, remaining);
        samplesLoaded += remaining;

        /* Load repeats of the loop to fill the buffer. */
        const size_t loopSize{loopEnd - loopStart};
        while(const size_t toFill{minz(samplesToLoad - samplesLoaded, loopSize)})
        {
            LoadSamples(voiceSamples+samplesLoaded, buffer->mSamples, srcChannel, loopStart,
                sampleType, srcStep, buffer->mBlockAlign, toFill);
            samplesLoaded += toFill;
        }
    }
}

void LoadBufferCallback(VoiceBufferItem *buffer, const size_t dataPosInt,
    const size_t numCallbackSamples, const FmtType sampleType, const size_t srcChannel,
    const size_t srcStep, size_t samplesLoaded, const size_t samplesToLoad, float *voiceSamples)
{
    /* Load what's left to play from the buffer */
    if(numCallbackSamples > dataPosInt) [[likely]]
    {
        const size_t remaining{minz(samplesToLoad-samplesLoaded, numCallbackSamples-dataPosInt)};
        LoadSamples(voiceSamples+samplesLoaded, buffer->mSamples, srcChannel, dataPosInt,
            sampleType, srcStep, buffer->mBlockAlign, remaining);
        samplesLoaded += remaining;
    }

    if(const size_t toFill{samplesToLoad - samplesLoaded})
    {
        auto srcsamples = voiceSamples + samplesLoaded;
        std::fill_n(srcsamples, toFill, *(srcsamples-1));
    }
}

void LoadBufferQueue(VoiceBufferItem *buffer, VoiceBufferItem *bufferLoopItem,
    size_t dataPosInt, const FmtType sampleType, const size_t srcChannel,
    const size_t srcStep, size_t samplesLoaded, const size_t samplesToLoad,
    float *voiceSamples)
{
    /* Crawl the buffer queue to fill in the temp buffer */
    while(buffer && samplesLoaded != samplesToLoad)
    {
        if(dataPosInt >= buffer->mSampleLen)
        {
            dataPosInt -= buffer->mSampleLen;
            buffer = buffer->mNext.load(std::memory_order_acquire);
            if(!buffer) buffer = bufferLoopItem;
            continue;
        }

        const size_t remaining{minz(samplesToLoad-samplesLoaded, buffer->mSampleLen-dataPosInt)};
        LoadSamples(voiceSamples+samplesLoaded, buffer->mSamples, srcChannel, dataPosInt,
            sampleType, srcStep, buffer->mBlockAlign, remaining);

        samplesLoaded += remaining;
        if(samplesLoaded == samplesToLoad)
            break;

        dataPosInt = 0;
        buffer = buffer->mNext.load(std::memory_order_acquire);
        if(!buffer) buffer = bufferLoopItem;
    }
    if(const size_t toFill{samplesToLoad - samplesLoaded})
    {
        auto srcsamples = voiceSamples + samplesLoaded;
        std::fill_n(srcsamples, toFill, *(srcsamples-1));
    }
}


void DoHrtfMix(const float *samples, const uint DstBufferSize, DirectParams &parms,
    const float TargetGain, const uint Counter, uint OutPos, const bool IsPlaying,
    DeviceBase *Device)
{
    const uint IrSize{Device->mIrSize};
    auto &HrtfSamples = Device->HrtfSourceData;
    auto &AccumSamples = Device->HrtfAccumData;

    /* Copy the HRTF history and new input samples into a temp buffer. */
    auto src_iter = std::copy(parms.Hrtf.History.begin(), parms.Hrtf.History.end(),
        std::begin(HrtfSamples));
    std::copy_n(samples, DstBufferSize, src_iter);
    /* Copy the last used samples back into the history buffer for later. */
    if(IsPlaying) [[likely]]
        std::copy_n(std::begin(HrtfSamples) + DstBufferSize, parms.Hrtf.History.size(),
            parms.Hrtf.History.begin());

    /* If fading and this is the first mixing pass, fade between the IRs. */
    uint fademix{0u};
    if(Counter && OutPos == 0)
    {
        fademix = minu(DstBufferSize, Counter);

        float gain{TargetGain};

        /* The new coefficients need to fade in completely since they're
         * replacing the old ones. To keep the gain fading consistent,
         * interpolate between the old and new target gains given how much of
         * the fade time this mix handles.
         */
        if(Counter > fademix)
        {
            const float a{static_cast<float>(fademix) / static_cast<float>(Counter)};
            gain = lerpf(parms.Hrtf.Old.Gain, TargetGain, a);
        }

        MixHrtfFilter hrtfparams{
            parms.Hrtf.Target.Coeffs,
            parms.Hrtf.Target.Delay,
            0.0f, gain / static_cast<float>(fademix)};
        MixHrtfBlendSamples(HrtfSamples, AccumSamples+OutPos, IrSize, &parms.Hrtf.Old, &hrtfparams,
            fademix);

        /* Update the old parameters with the result. */
        parms.Hrtf.Old = parms.Hrtf.Target;
        parms.Hrtf.Old.Gain = gain;
        OutPos += fademix;
    }

    if(fademix < DstBufferSize)
    {
        const uint todo{DstBufferSize - fademix};
        float gain{TargetGain};

        /* Interpolate the target gain if the gain fading lasts longer than
         * this mix.
         */
        if(Counter > DstBufferSize)
        {
            const float a{static_cast<float>(todo) / static_cast<float>(Counter-fademix)};
            gain = lerpf(parms.Hrtf.Old.Gain, TargetGain, a);
        }

        MixHrtfFilter hrtfparams{
            parms.Hrtf.Target.Coeffs,
            parms.Hrtf.Target.Delay,
            parms.Hrtf.Old.Gain,
            (gain - parms.Hrtf.Old.Gain) / static_cast<float>(todo)};
        MixHrtfSamples(HrtfSamples+fademix, AccumSamples+OutPos, IrSize, &hrtfparams, todo);

        /* Store the now-current gain for next time. */
        parms.Hrtf.Old.Gain = gain;
    }
}

void DoNfcMix(const al::span<const float> samples, FloatBufferLine *OutBuffer, DirectParams &parms,
    const float *TargetGains, const uint Counter, const uint OutPos, DeviceBase *Device)
{
    using FilterProc = void (NfcFilter::*)(const al::span<const float>, float*);
    static constexpr FilterProc NfcProcess[MaxAmbiOrder+1]{
        nullptr, &NfcFilter::process1, &NfcFilter::process2, &NfcFilter::process3};

    float *CurrentGains{parms.Gains.Current.data()};
    MixSamples(samples, {OutBuffer, 1u}, CurrentGains, TargetGains, Counter, OutPos);
    ++OutBuffer;
    ++CurrentGains;
    ++TargetGains;

    const al::span<float> nfcsamples{Device->NfcSampleData, samples.size()};
    size_t order{1};
    while(const size_t chancount{Device->NumChannelsPerOrder[order]})
    {
        (parms.NFCtrlFilter.*NfcProcess[order])(samples, nfcsamples.data());
        MixSamples(nfcsamples, {OutBuffer, chancount}, CurrentGains, TargetGains, Counter, OutPos);
        OutBuffer += chancount;
        CurrentGains += chancount;
        TargetGains += chancount;
        if(++order == MaxAmbiOrder+1)
            break;
    }
}

} // namespace

void Voice::mix(const State vstate, ContextBase *Context, const nanoseconds deviceTime,
    const uint SamplesToDo)
{
    static constexpr std::array<float,MAX_OUTPUT_CHANNELS> SilentTarget{};

    ASSUME(SamplesToDo > 0);

    DeviceBase *Device{Context->mDevice};
    const uint NumSends{Device->NumAuxSends};

    /* Get voice info */
    int DataPosInt{mPosition.load(std::memory_order_relaxed)};
    uint DataPosFrac{mPositionFrac.load(std::memory_order_relaxed)};
    VoiceBufferItem *BufferListItem{mCurrentBuffer.load(std::memory_order_relaxed)};
    VoiceBufferItem *BufferLoopItem{mLoopBuffer.load(std::memory_order_relaxed)};
    const uint increment{mStep};
    if(increment < 1) [[unlikely]]
    {
        /* If the voice is supposed to be stopping but can't be mixed, just
         * stop it before bailing.
         */
        if(vstate == Stopping)
            mPlayState.store(Stopped, std::memory_order_release);
        return;
    }

    /* If the static voice's current position is beyond the buffer loop end
     * position, disable looping.
     */
    if(mFlags.test(VoiceIsStatic) && BufferLoopItem)
    {
        if(DataPosInt >= 0 && static_cast<uint>(DataPosInt) >= BufferListItem->mLoopEnd)
            BufferLoopItem = nullptr;
    }

    uint OutPos{0u};

    /* Check if we're doing a delayed start, and we start in this update. */
    if(mStartTime > deviceTime)
    {
        /* If the start time is too far ahead, don't bother. */
        auto diff = mStartTime - deviceTime;
        if(diff >= seconds{1})
            return;

        /* Get the number of samples ahead of the current time that output
         * should start at. Skip this update if it's beyond the output sample
         * count.
         *
         * Round the start position to a multiple of 4, which some mixers want.
         * This makes the start time accurate to 4 samples. This could be made
         * sample-accurate by forcing non-SIMD functions on the first run.
         */
        seconds::rep sampleOffset{duration_cast<seconds>(diff * Device->Frequency).count()};
        sampleOffset = (sampleOffset+2) & ~seconds::rep{3};
        if(sampleOffset >= SamplesToDo)
            return;

        OutPos = static_cast<uint>(sampleOffset);
    }

    /* Calculate the number of samples to mix, and the number of (resampled)
     * samples that need to be loaded (mixing samples and decoder padding).
     */
    const uint samplesToMix{SamplesToDo - OutPos};
    const uint samplesToLoad{samplesToMix + mDecoderPadding};

    /* Get a span of pointers to hold the floating point, deinterlaced,
     * resampled buffer data to be mixed.
     */
    std::array<float*,DeviceBase::MixerChannelsMax> SamplePointers;
    const al::span<float*> MixingSamples{SamplePointers.data(), mChans.size()};
    auto get_bufferline = [](DeviceBase::MixerBufferLine &bufline) noexcept -> float*
    { return bufline.data(); };
    std::transform(Device->mSampleData.end() - mChans.size(), Device->mSampleData.end(),
        MixingSamples.begin(), get_bufferline);

    /* If there's a matching sample step and no phase offset, use a simple copy
     * for resampling.
     */
    const ResamplerFunc Resample{(increment == MixerFracOne && DataPosFrac == 0)
        ? ResamplerFunc{[](const InterpState*, const float *RESTRICT src, uint, const uint,
            const al::span<float> dst) { std::copy_n(src, dst.size(), dst.begin()); }}
        : mResampler};

    /* UHJ2 and SuperStereo only have 2 buffer channels, but 3 mixing channels
     * (3rd channel is generated from decoding).
     */
    const size_t realChannels{(mFmtChannels == FmtUHJ2 || mFmtChannels == FmtSuperStereo) ? 2u
        : MixingSamples.size()};
    for(size_t chan{0};chan < realChannels;++chan)
    {
        using ResBufType = decltype(DeviceBase::mResampleData);
        static constexpr uint srcSizeMax{static_cast<uint>(ResBufType{}.size()-MaxResamplerEdge)};

        const auto prevSamples = al::as_span(mPrevSamples[chan]);
        const auto resampleBuffer = std::copy(prevSamples.cbegin(), prevSamples.cend(),
            Device->mResampleData.begin()) - MaxResamplerEdge;
        int intPos{DataPosInt};
        uint fracPos{DataPosFrac};

        /* Load samples for this channel from the available buffer(s), with
         * resampling.
         */
        for(uint samplesLoaded{0};samplesLoaded < samplesToLoad;)
        {
            /* Calculate the number of dst samples that can be loaded this
             * iteration, given the available resampler buffer size, and the
             * number of src samples that are needed to load it.
             */
            auto calc_buffer_sizes = [fracPos,increment](uint dstBufferSize)
            {
                /* If ext=true, calculate the last written dst pos from the dst
                 * count, convert to the last read src pos, then add one to get
                 * the src count.
                 *
                 * If ext=false, convert the dst count to src count directly.
                 *
                 * Without this, the src count could be short by one when
                 * increment < 1.0, or not have a full src at the end when
                 * increment > 1.0.
                 */
                const bool ext{increment <= MixerFracOne};
                uint64_t dataSize64{dstBufferSize - ext};
                dataSize64 = (dataSize64*increment + fracPos) >> MixerFracBits;
                /* Also include resampler padding. */
                dataSize64 += ext + MaxResamplerEdge;

                if(dataSize64 <= srcSizeMax)
                    return std::make_pair(dstBufferSize, static_cast<uint>(dataSize64));

                /* If the source size got saturated, we can't fill the desired
                 * dst size. Figure out how many dst samples we can fill.
                 */
                dataSize64 = srcSizeMax - MaxResamplerEdge;
                dataSize64 = ((dataSize64<<MixerFracBits) - fracPos) / increment;
                if(dataSize64 < dstBufferSize)
                {
                    /* Some resamplers require the destination being 16-byte
                     * aligned, so limit to a multiple of 4 samples to maintain
                     * alignment if we need to do another iteration after this.
                     */
                    dstBufferSize = static_cast<uint>(dataSize64) & ~3u;
                }
                return std::make_pair(dstBufferSize, srcSizeMax);
            };
            const auto bufferSizes = calc_buffer_sizes(samplesToLoad - samplesLoaded);
            const auto dstBufferSize = bufferSizes.first;
            const auto srcBufferSize = bufferSizes.second;

            /* Load the necessary samples from the given buffer(s). */
            if(!BufferListItem)
            {
                const uint avail{minu(srcBufferSize, MaxResamplerEdge)};
                const uint tofill{maxu(srcBufferSize, MaxResamplerEdge)};

                /* When loading from a voice that ended prematurely, only take
                 * the samples that get closest to 0 amplitude. This helps
                 * certain sounds fade out better.
                 */
                auto abs_lt = [](const float lhs, const float rhs) noexcept -> bool
                { return std::abs(lhs) < std::abs(rhs); };
                auto srciter = std::min_element(resampleBuffer, resampleBuffer+avail, abs_lt);

                std::fill(srciter+1, resampleBuffer+tofill, *srciter);
            }
            else
            {
                size_t srcSampleDelay{0};
                if(intPos < 0) [[unlikely]]
                {
                    /* If the current position is negative, there's that many
                     * silent samples to load before using the buffer.
                     */
                    srcSampleDelay = static_cast<uint>(-intPos);
                    if(srcSampleDelay >= srcBufferSize)
                    {
                        /* If the number of silent source samples exceeds the
                         * number to load, the output will be silent.
                         */
                        std::fill_n(MixingSamples[chan]+samplesLoaded, dstBufferSize, 0.0f);
                        std::fill_n(resampleBuffer, srcBufferSize, 0.0f);
                        goto skip_resample;
                    }

                    std::fill_n(resampleBuffer, srcSampleDelay, 0.0f);
                }
                const uint uintPos{static_cast<uint>(maxi(intPos, 0))};

                if(mFlags.test(VoiceIsStatic))
                    LoadBufferStatic(BufferListItem, BufferLoopItem, uintPos, mFmtType, chan,
                        mFrameStep, srcSampleDelay, srcBufferSize, al::to_address(resampleBuffer));
                else if(mFlags.test(VoiceIsCallback))
                {
                    const uint callbackBase{mCallbackBlockBase * mSamplesPerBlock};
                    const size_t bufferOffset{uintPos - callbackBase};
                    const size_t needSamples{bufferOffset + srcBufferSize - srcSampleDelay};
                    const size_t needBlocks{(needSamples + mSamplesPerBlock-1) / mSamplesPerBlock};
                    if(!mFlags.test(VoiceCallbackStopped) && needBlocks > mNumCallbackBlocks)
                    {
                        const size_t byteOffset{mNumCallbackBlocks*mBytesPerBlock};
                        const size_t needBytes{(needBlocks-mNumCallbackBlocks)*mBytesPerBlock};

                        const int gotBytes{BufferListItem->mCallback(BufferListItem->mUserData,
                            &BufferListItem->mSamples[byteOffset], static_cast<int>(needBytes))};
                        if(gotBytes < 0)
                            mFlags.set(VoiceCallbackStopped);
                        else if(static_cast<uint>(gotBytes) < needBytes)
                        {
                            mFlags.set(VoiceCallbackStopped);
                            mNumCallbackBlocks += static_cast<uint>(gotBytes) / mBytesPerBlock;
                        }
                        else
                            mNumCallbackBlocks = static_cast<uint>(needBlocks);
                    }
                    const size_t numSamples{uint{mNumCallbackBlocks} * mSamplesPerBlock};
                    LoadBufferCallback(BufferListItem, bufferOffset, numSamples, mFmtType, chan,
                        mFrameStep, srcSampleDelay, srcBufferSize, al::to_address(resampleBuffer));
                }
                else
                    LoadBufferQueue(BufferListItem, BufferLoopItem, uintPos, mFmtType, chan,
                        mFrameStep, srcSampleDelay, srcBufferSize, al::to_address(resampleBuffer));
            }

            Resample(&mResampleState, al::to_address(resampleBuffer), fracPos, increment,
                {MixingSamples[chan]+samplesLoaded, dstBufferSize});

            /* Store the last source samples used for next time. */
            if(vstate == Playing) [[likely]]
            {
                /* Only store samples for the end of the mix, excluding what
                 * gets loaded for decoder padding.
                 */
                const uint loadEnd{samplesLoaded + dstBufferSize};
                if(samplesToMix > samplesLoaded && samplesToMix <= loadEnd) [[likely]]
                {
                    const size_t dstOffset{samplesToMix - samplesLoaded};
                    const size_t srcOffset{(dstOffset*increment + fracPos) >> MixerFracBits};
                    std::copy_n(resampleBuffer-MaxResamplerEdge+srcOffset, prevSamples.size(),
                        prevSamples.begin());
                }
            }

        skip_resample:
            samplesLoaded += dstBufferSize;
            if(samplesLoaded < samplesToLoad)
            {
                fracPos += dstBufferSize*increment;
                const uint srcOffset{fracPos >> MixerFracBits};
                fracPos &= MixerFracMask;
                intPos += srcOffset;

                /* If more samples need to be loaded, copy the back of the
                 * resampleBuffer to the front to reuse it. prevSamples isn't
                 * reliable since it's only updated for the end of the mix.
                 */
                std::copy(resampleBuffer-MaxResamplerEdge+srcOffset,
                    resampleBuffer+MaxResamplerEdge+srcOffset, resampleBuffer-MaxResamplerEdge);
            }
        }
    }
    for(auto &samples : MixingSamples.subspan(realChannels))
        std::fill_n(samples, samplesToLoad, 0.0f);

    if(mDecoder)
        mDecoder->decode(MixingSamples, samplesToMix, (vstate==Playing));

    if(mFlags.test(VoiceIsAmbisonic))
    {
        auto voiceSamples = MixingSamples.begin();
        for(auto &chandata : mChans)
        {
            chandata.mAmbiSplitter.processScale({*voiceSamples, samplesToMix},
                chandata.mAmbiHFScale, chandata.mAmbiLFScale);
            ++voiceSamples;
        }
    }

    const uint Counter{mFlags.test(VoiceIsFading) ? minu(samplesToMix, 64u) : 0u};
    if(!Counter)
    {
        /* No fading, just overwrite the old/current params. */
        for(auto &chandata : mChans)
        {
            {
                DirectParams &parms = chandata.mDryParams;
                if(!mFlags.test(VoiceHasHrtf))
                    parms.Gains.Current = parms.Gains.Target;
                else
                    parms.Hrtf.Old = parms.Hrtf.Target;
            }
            for(uint send{0};send < NumSends;++send)
            {
                if(mSend[send].Buffer.empty())
                    continue;

                SendParams &parms = chandata.mWetParams[send];
                parms.Gains.Current = parms.Gains.Target;
            }
        }
    }

    auto voiceSamples = MixingSamples.begin();
    for(auto &chandata : mChans)
    {
        /* Now filter and mix to the appropriate outputs. */
        const al::span<float,BufferLineSize> FilterBuf{Device->FilteredData};
        {
            DirectParams &parms = chandata.mDryParams;
            const float *samples{DoFilters(parms.LowPass, parms.HighPass, FilterBuf.data(),
                {*voiceSamples, samplesToMix}, mDirect.FilterType)};

            if(mFlags.test(VoiceHasHrtf))
            {
                const float TargetGain{parms.Hrtf.Target.Gain * (vstate == Playing)};
                DoHrtfMix(samples, samplesToMix, parms, TargetGain, Counter, OutPos,
                    (vstate == Playing), Device);
            }
            else
            {
                const float *TargetGains{(vstate == Playing) ? parms.Gains.Target.data()
                    : SilentTarget.data()};
                if(mFlags.test(VoiceHasNfc))
                    DoNfcMix({samples, samplesToMix}, mDirect.Buffer.data(), parms,
                        TargetGains, Counter, OutPos, Device);
                else
                    MixSamples({samples, samplesToMix}, mDirect.Buffer,
                        parms.Gains.Current.data(), TargetGains, Counter, OutPos);
            }
        }

        for(uint send{0};send < NumSends;++send)
        {
            if(mSend[send].Buffer.empty())
                continue;

            SendParams &parms = chandata.mWetParams[send];
            const float *samples{DoFilters(parms.LowPass, parms.HighPass, FilterBuf.data(),
                {*voiceSamples, samplesToMix}, mSend[send].FilterType)};

            const float *TargetGains{(vstate == Playing) ? parms.Gains.Target.data()
                : SilentTarget.data()};
            MixSamples({samples, samplesToMix}, mSend[send].Buffer,
                parms.Gains.Current.data(), TargetGains, Counter, OutPos);
        }

        ++voiceSamples;
    }

    mFlags.set(VoiceIsFading);

    /* Don't update positions and buffers if we were stopping. */
    if(vstate == Stopping) [[unlikely]]
    {
        mPlayState.store(Stopped, std::memory_order_release);
        return;
    }

    /* Update voice positions and buffers as needed. */
    DataPosFrac += increment*samplesToMix;
    const uint SrcSamplesDone{DataPosFrac>>MixerFracBits};
    DataPosInt  += SrcSamplesDone;
    DataPosFrac &= MixerFracMask;

    uint buffers_done{0u};
    if(BufferListItem && DataPosInt >= 0) [[likely]]
    {
        if(mFlags.test(VoiceIsStatic))
        {
            if(BufferLoopItem)
            {
                /* Handle looping static source */
                const uint LoopStart{BufferListItem->mLoopStart};
                const uint LoopEnd{BufferListItem->mLoopEnd};
                uint DataPosUInt{static_cast<uint>(DataPosInt)};
                if(DataPosUInt >= LoopEnd)
                {
                    assert(LoopEnd > LoopStart);
                    DataPosUInt = ((DataPosUInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart;
                    DataPosInt = static_cast<int>(DataPosUInt);
                }
            }
            else
            {
                /* Handle non-looping static source */
                if(static_cast<uint>(DataPosInt) >= BufferListItem->mSampleLen)
                    BufferListItem = nullptr;
            }
        }
        else if(mFlags.test(VoiceIsCallback))
        {
            /* Handle callback buffer source */
            const uint currentBlock{static_cast<uint>(DataPosInt) / mSamplesPerBlock};
            const uint blocksDone{currentBlock - mCallbackBlockBase};
            if(blocksDone < mNumCallbackBlocks)
            {
                const size_t byteOffset{blocksDone*mBytesPerBlock};
                const size_t byteEnd{mNumCallbackBlocks*mBytesPerBlock};
                al::byte *data{BufferListItem->mSamples};
                std::copy(data+byteOffset, data+byteEnd, data);
                mNumCallbackBlocks -= blocksDone;
                mCallbackBlockBase += blocksDone;
            }
            else
            {
                BufferListItem = nullptr;
                mNumCallbackBlocks = 0;
                mCallbackBlockBase += blocksDone;
            }
        }
        else
        {
            /* Handle streaming source */
            do {
                if(BufferListItem->mSampleLen > static_cast<uint>(DataPosInt))
                    break;

                DataPosInt -= BufferListItem->mSampleLen;

                ++buffers_done;
                BufferListItem = BufferListItem->mNext.load(std::memory_order_relaxed);
                if(!BufferListItem) BufferListItem = BufferLoopItem;
            } while(BufferListItem);
        }
    }

    /* Capture the source ID in case it gets reset for stopping. */
    const uint SourceID{mSourceID.load(std::memory_order_relaxed)};

    /* Update voice info */
    mPosition.store(DataPosInt, std::memory_order_relaxed);
    mPositionFrac.store(DataPosFrac, std::memory_order_relaxed);
    mCurrentBuffer.store(BufferListItem, std::memory_order_relaxed);
    if(!BufferListItem)
    {
        mLoopBuffer.store(nullptr, std::memory_order_relaxed);
        mSourceID.store(0u, std::memory_order_relaxed);
    }
    std::atomic_thread_fence(std::memory_order_release);

    /* Send any events now, after the position/buffer info was updated. */
    const auto enabledevt = Context->mEnabledEvts.load(std::memory_order_acquire);
    if(buffers_done > 0 && enabledevt.test(AsyncEvent::BufferCompleted))
    {
        RingBuffer *ring{Context->mAsyncEvents.get()};
        auto evt_vec = ring->getWriteVector();
        if(evt_vec.first.len > 0)
        {
            AsyncEvent *evt{al::construct_at(reinterpret_cast<AsyncEvent*>(evt_vec.first.buf),
                AsyncEvent::BufferCompleted)};
            evt->u.bufcomp.id = SourceID;
            evt->u.bufcomp.count = buffers_done;
            ring->writeAdvance(1);
        }
    }

    if(!BufferListItem)
    {
        /* If the voice just ended, set it to Stopping so the next render
         * ensures any residual noise fades to 0 amplitude.
         */
        mPlayState.store(Stopping, std::memory_order_release);
        if(enabledevt.test(AsyncEvent::SourceStateChange))
            SendSourceStoppedEvent(Context, SourceID);
    }
}

void Voice::prepare(DeviceBase *device)
{
    /* Even if storing really high order ambisonics, we only mix channels for
     * orders up to the device order. The rest are simply dropped.
     */
    uint num_channels{(mFmtChannels == FmtUHJ2 || mFmtChannels == FmtSuperStereo) ? 3 :
        ChannelsFromFmt(mFmtChannels, minu(mAmbiOrder, device->mAmbiOrder))};
    if(num_channels > device->mSampleData.size()) [[unlikely]]
    {
        ERR("Unexpected channel count: %u (limit: %zu, %d:%d)\n", num_channels,
            device->mSampleData.size(), mFmtChannels, mAmbiOrder);
        num_channels = static_cast<uint>(device->mSampleData.size());
    }
    if(mChans.capacity() > 2 && num_channels < mChans.capacity())
    {
        decltype(mChans){}.swap(mChans);
        decltype(mPrevSamples){}.swap(mPrevSamples);
    }
    mChans.reserve(maxu(2, num_channels));
    mChans.resize(num_channels);
    mPrevSamples.reserve(maxu(2, num_channels));
    mPrevSamples.resize(num_channels);

    mDecoder = nullptr;
    mDecoderPadding = 0;
    if(mFmtChannels == FmtSuperStereo)
    {
        switch(UhjDecodeQuality)
        {
        case UhjQualityType::IIR:
            mDecoder = std::make_unique<UhjStereoDecoderIIR>();
            mDecoderPadding = UhjStereoDecoderIIR::sInputPadding;
            break;
        case UhjQualityType::FIR256:
            mDecoder = std::make_unique<UhjStereoDecoder<UhjLength256>>();
            mDecoderPadding = UhjStereoDecoder<UhjLength256>::sInputPadding;
            break;
        case UhjQualityType::FIR512:
            mDecoder = std::make_unique<UhjStereoDecoder<UhjLength512>>();
            mDecoderPadding = UhjStereoDecoder<UhjLength512>::sInputPadding;
            break;
        }
    }
    else if(IsUHJ(mFmtChannels))
    {
        switch(UhjDecodeQuality)
        {
        case UhjQualityType::IIR:
            mDecoder = std::make_unique<UhjDecoderIIR>();
            mDecoderPadding = UhjDecoderIIR::sInputPadding;
            break;
        case UhjQualityType::FIR256:
            mDecoder = std::make_unique<UhjDecoder<UhjLength256>>();
            mDecoderPadding = UhjDecoder<UhjLength256>::sInputPadding;
            break;
        case UhjQualityType::FIR512:
            mDecoder = std::make_unique<UhjDecoder<UhjLength512>>();
            mDecoderPadding = UhjDecoder<UhjLength512>::sInputPadding;
            break;
        }
    }

    /* Clear the stepping value explicitly so the mixer knows not to mix this
     * until the update gets applied.
     */
    mStep = 0;

    /* Make sure the sample history is cleared. */
    std::fill(mPrevSamples.begin(), mPrevSamples.end(), HistoryLine{});

    if(mFmtChannels == FmtUHJ2 && !device->mUhjEncoder)
    {
        /* 2-channel UHJ needs different shelf filters. However, we can't just
         * use different shelf filters after mixing it, given any old speaker
         * setup the user has. To make this work, we apply the expected shelf
         * filters for decoding UHJ2 to quad (only needs LF scaling), and act
         * as if those 4 quad channels are encoded right back into B-Format.
         *
         * This isn't perfect, but without an entirely separate and limited
         * UHJ2 path, it's better than nothing.
         *
         * Note this isn't needed with UHJ output (UHJ2->B-Format->UHJ2 is
         * identity, so don't mess with it).
         */
        const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
        for(auto &chandata : mChans)
        {
            chandata.mAmbiHFScale = 1.0f;
            chandata.mAmbiLFScale = 1.0f;
            chandata.mAmbiSplitter = splitter;
            chandata.mDryParams = DirectParams{};
            chandata.mDryParams.NFCtrlFilter = device->mNFCtrlFilter;
            std::fill_n(chandata.mWetParams.begin(), device->NumAuxSends, SendParams{});
        }
        mChans[0].mAmbiLFScale = DecoderBase::sWLFScale;
        mChans[1].mAmbiLFScale = DecoderBase::sXYLFScale;
        mChans[2].mAmbiLFScale = DecoderBase::sXYLFScale;
        mFlags.set(VoiceIsAmbisonic);
    }
    /* Don't need to set the VoiceIsAmbisonic flag if the device is not higher
     * order than the voice. No HF scaling is necessary to mix it.
     */
    else if(mAmbiOrder && device->mAmbiOrder > mAmbiOrder)
    {
        const uint8_t *OrderFromChan{Is2DAmbisonic(mFmtChannels) ?
            AmbiIndex::OrderFrom2DChannel().data() : AmbiIndex::OrderFromChannel().data()};
        const auto scales = AmbiScale::GetHFOrderScales(mAmbiOrder, device->mAmbiOrder,
            device->m2DMixing);

        const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
        for(auto &chandata : mChans)
        {
            chandata.mAmbiHFScale = scales[*(OrderFromChan++)];
            chandata.mAmbiLFScale = 1.0f;
            chandata.mAmbiSplitter = splitter;
            chandata.mDryParams = DirectParams{};
            chandata.mDryParams.NFCtrlFilter = device->mNFCtrlFilter;
            std::fill_n(chandata.mWetParams.begin(), device->NumAuxSends, SendParams{});
        }
        mFlags.set(VoiceIsAmbisonic);
    }
    else
    {
        for(auto &chandata : mChans)
        {
            chandata.mDryParams = DirectParams{};
            chandata.mDryParams.NFCtrlFilter = device->mNFCtrlFilter;
            std::fill_n(chandata.mWetParams.begin(), device->NumAuxSends, SendParams{});
        }
        mFlags.reset(VoiceIsAmbisonic);
    }
}