aboutsummaryrefslogtreecommitdiffstats
path: root/utils/makehrtf.cpp
blob: 27b1d69d2e65a37fe671b69be01a0d70d93d3c8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
/*
 * HRTF utility for producing and demonstrating the process of creating an
 * OpenAL Soft compatible HRIR data set.
 *
 * Copyright (C) 2011-2019  Christopher Fitzgerald
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Or visit:  http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
 *
 * --------------------------------------------------------------------------
 *
 * A big thanks goes out to all those whose work done in the field of
 * binaural sound synthesis using measured HRTFs makes this utility and the
 * OpenAL Soft implementation possible.
 *
 * The algorithm for diffuse-field equalization was adapted from the work
 * done by Rio Emmanuel and Larcher Veronique of IRCAM and Bill Gardner of
 * MIT Media Laboratory.  It operates as follows:
 *
 *  1.  Take the FFT of each HRIR and only keep the magnitude responses.
 *  2.  Calculate the diffuse-field power-average of all HRIRs weighted by
 *      their contribution to the total surface area covered by their
 *      measurement. This has since been modified to use coverage volume for
 *      multi-field HRIR data sets.
 *  3.  Take the diffuse-field average and limit its magnitude range.
 *  4.  Equalize the responses by using the inverse of the diffuse-field
 *      average.
 *  5.  Reconstruct the minimum-phase responses.
 *  5.  Zero the DC component.
 *  6.  IFFT the result and truncate to the desired-length minimum-phase FIR.
 *
 * The spherical head algorithm for calculating propagation delay was adapted
 * from the paper:
 *
 *  Modeling Interaural Time Difference Assuming a Spherical Head
 *  Joel David Miller
 *  Music 150, Musical Acoustics, Stanford University
 *  December 2, 2001
 *
 * The formulae for calculating the Kaiser window metrics are from the
 * the textbook:
 *
 *  Discrete-Time Signal Processing
 *  Alan V. Oppenheim and Ronald W. Schafer
 *  Prentice-Hall Signal Processing Series
 *  1999
 */

#include "config.h"

#define _UNICODE
#include <cstdio>
#include <cstdlib>
#include <cstdarg>
#include <cstddef>
#include <cstring>
#include <climits>
#include <cstdint>
#include <cctype>
#include <cmath>
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#ifdef HAVE_GETOPT
#include <unistd.h>
#else
#include "getopt.h"
#endif

#include <atomic>
#include <limits>
#include <vector>
#include <chrono>
#include <thread>
#include <complex>
#include <numeric>
#include <algorithm>
#include <functional>

#include "mysofa.h"

#include "win_main_utf8.h"

namespace {

using namespace std::placeholders;

} // namespace

#ifndef M_PI
#define M_PI                         (3.14159265358979323846)
#endif


// The epsilon used to maintain signal stability.
#define EPSILON                      (1e-9)

// Constants for accessing the token reader's ring buffer.
#define TR_RING_BITS                 (16)
#define TR_RING_SIZE                 (1 << TR_RING_BITS)
#define TR_RING_MASK                 (TR_RING_SIZE - 1)

// The token reader's load interval in bytes.
#define TR_LOAD_SIZE                 (TR_RING_SIZE >> 2)

// The maximum identifier length used when processing the data set
// definition.
#define MAX_IDENT_LEN                (16)

// The maximum path length used when processing filenames.
#define MAX_PATH_LEN                 (256)

// The limits for the sample 'rate' metric in the data set definition and for
// resampling.
#define MIN_RATE                     (32000)
#define MAX_RATE                     (96000)

// The limits for the HRIR 'points' metric in the data set definition.
#define MIN_POINTS                   (16)
#define MAX_POINTS                   (8192)

// The limit to the number of 'distances' listed in the data set definition.
#define MAX_FD_COUNT                 (16)

// The limits to the number of 'azimuths' listed in the data set definition.
#define MIN_EV_COUNT                 (5)
#define MAX_EV_COUNT                 (128)

// The limits for each of the 'azimuths' listed in the data set definition.
#define MIN_AZ_COUNT                 (1)
#define MAX_AZ_COUNT                 (128)

// The limits for the listener's head 'radius' in the data set definition.
#define MIN_RADIUS                   (0.05)
#define MAX_RADIUS                   (0.15)

// The limits for the 'distance' from source to listener for each field in
// the definition file.
#define MIN_DISTANCE                 (0.05)
#define MAX_DISTANCE                 (2.50)

// The maximum number of channels that can be addressed for a WAVE file
// source listed in the data set definition.
#define MAX_WAVE_CHANNELS            (65535)

// The limits to the byte size for a binary source listed in the definition
// file.
#define MIN_BIN_SIZE                 (2)
#define MAX_BIN_SIZE                 (4)

// The minimum number of significant bits for binary sources listed in the
// data set definition.  The maximum is calculated from the byte size.
#define MIN_BIN_BITS                 (16)

// The limits to the number of significant bits for an ASCII source listed in
// the data set definition.
#define MIN_ASCII_BITS               (16)
#define MAX_ASCII_BITS               (32)

// The limits to the FFT window size override on the command line.
#define MIN_FFTSIZE                  (65536)
#define MAX_FFTSIZE                  (131072)

// The limits to the equalization range limit on the command line.
#define MIN_LIMIT                    (2.0)
#define MAX_LIMIT                    (120.0)

// The limits to the truncation window size on the command line.
#define MIN_TRUNCSIZE                (16)
#define MAX_TRUNCSIZE                (512)

// The limits to the custom head radius on the command line.
#define MIN_CUSTOM_RADIUS            (0.05)
#define MAX_CUSTOM_RADIUS            (0.15)

// The truncation window size must be a multiple of the below value to allow
// for vectorized convolution.
#define MOD_TRUNCSIZE                (8)

// The defaults for the command line options.
#define DEFAULT_FFTSIZE              (65536)
#define DEFAULT_EQUALIZE             (1)
#define DEFAULT_SURFACE              (1)
#define DEFAULT_LIMIT                (24.0)
#define DEFAULT_TRUNCSIZE            (32)
#define DEFAULT_HEAD_MODEL           (HM_DATASET)
#define DEFAULT_CUSTOM_RADIUS        (0.0)

// The four-character-codes for RIFF/RIFX WAVE file chunks.
#define FOURCC_RIFF                  (0x46464952) // 'RIFF'
#define FOURCC_RIFX                  (0x58464952) // 'RIFX'
#define FOURCC_WAVE                  (0x45564157) // 'WAVE'
#define FOURCC_FMT                   (0x20746D66) // 'fmt '
#define FOURCC_DATA                  (0x61746164) // 'data'
#define FOURCC_LIST                  (0x5453494C) // 'LIST'
#define FOURCC_WAVL                  (0x6C766177) // 'wavl'
#define FOURCC_SLNT                  (0x746E6C73) // 'slnt'

// The supported wave formats.
#define WAVE_FORMAT_PCM              (0x0001)
#define WAVE_FORMAT_IEEE_FLOAT       (0x0003)
#define WAVE_FORMAT_EXTENSIBLE       (0xFFFE)

// The maximum propagation delay value supported by OpenAL Soft.
#define MAX_HRTD                     (63.0)

// The OpenAL Soft HRTF format marker.  It stands for minimum-phase head
// response protocol 02.
#define MHR_FORMAT                   ("MinPHR02")

// Sample and channel type enum values.
enum SampleTypeT {
    ST_S16 = 0,
    ST_S24 = 1
};

// Certain iterations rely on these integer enum values.
enum ChannelTypeT {
    CT_NONE   = -1,
    CT_MONO   = 0,
    CT_STEREO = 1
};

// Byte order for the serialization routines.
enum ByteOrderT {
    BO_NONE,
    BO_LITTLE,
    BO_BIG
};

// Source format for the references listed in the data set definition.
enum SourceFormatT {
    SF_NONE,
    SF_ASCII,  // ASCII text file.
    SF_BIN_LE, // Little-endian binary file.
    SF_BIN_BE, // Big-endian binary file.
    SF_WAVE,   // RIFF/RIFX WAVE file.
    SF_SOFA    // Spatially Oriented Format for Accoustics (SOFA) file.
};

// Element types for the references listed in the data set definition.
enum ElementTypeT {
    ET_NONE,
    ET_INT,  // Integer elements.
    ET_FP    // Floating-point elements.
};

// Head model used for calculating the impulse delays.
enum HeadModelT {
    HM_NONE,
    HM_DATASET, // Measure the onset from the dataset.
    HM_SPHERE   // Calculate the onset using a spherical head model.
};

/* Unsigned integer type. */
using uint = unsigned int;

/* Complex double type. */
using complex_d = std::complex<double>;

/* Channel index enums. Mono uses LeftChannel only. */
enum ChannelIndex : uint {
    LeftChannel = 0u,
    RightChannel = 1u
};


// Token reader state for parsing the data set definition.
struct TokenReaderT {
    FILE *mFile;
    const char *mName;
    uint        mLine;
    uint        mColumn;
    char   mRing[TR_RING_SIZE];
    size_t mIn;
    size_t mOut;
};

// Source reference state used when loading sources.
struct SourceRefT {
    SourceFormatT mFormat;
    ElementTypeT  mType;
    uint mSize;
    int  mBits;
    uint mChannel;
    double mAzimuth;
    double mElevation;
    double mRadius;
    uint mSkip;
    uint mOffset;
    char mPath[MAX_PATH_LEN+1];
};

// Structured HRIR storage for stereo azimuth pairs, elevations, and fields.
struct HrirAzT {
    double mAzimuth{0.0};
    uint mIndex{0u};
    double mDelays[2]{0.0, 0.0};
    double *mIrs[2]{nullptr, nullptr};
};

struct HrirEvT {
    double mElevation{0.0};
    uint mIrCount{0u};
    uint mAzCount{0u};
    HrirAzT *mAzs{nullptr};
};

struct HrirFdT {
    double mDistance{0.0};
    uint mIrCount{0u};
    uint mEvCount{0u};
    uint mEvStart{0u};
    HrirEvT *mEvs{nullptr};
};

// The HRIR metrics and data set used when loading, processing, and storing
// the resulting HRTF.
struct HrirDataT {
    uint mIrRate{0u};
    SampleTypeT mSampleType{ST_S24};
    ChannelTypeT mChannelType{CT_NONE};
    uint mIrPoints{0u};
    uint mFftSize{0u};
    uint mIrSize{0u};
    double mRadius{0.0};
    uint mIrCount{0u};
    uint mFdCount{0u};

    std::vector<double> mHrirsBase;
    std::vector<HrirEvT> mEvsBase;
    std::vector<HrirAzT> mAzsBase;

    std::vector<HrirFdT> mFds;
};

// The resampler metrics and FIR filter.
struct ResamplerT {
    uint mP, mQ, mM, mL;
    std::vector<double> mF;
};


/*****************************
 *** Token reader routines ***
 *****************************/

/* Whitespace is not significant. It can process tokens as identifiers, numbers
 * (integer and floating-point), strings, and operators. Strings must be
 * encapsulated by double-quotes and cannot span multiple lines.
 */

// Setup the reader on the given file.  The filename can be NULL if no error
// output is desired.
static void TrSetup(FILE *fp, const char *filename, TokenReaderT *tr)
{
    const char *name = nullptr;

    if(filename)
    {
        const char *slash = strrchr(filename, '/');
        if(slash)
        {
            const char *bslash = strrchr(slash+1, '\\');
            if(bslash) name = bslash+1;
            else name = slash+1;
        }
        else
        {
            const char *bslash = strrchr(filename, '\\');
            if(bslash) name = bslash+1;
            else name = filename;
        }
    }

    tr->mFile = fp;
    tr->mName = name;
    tr->mLine = 1;
    tr->mColumn = 1;
    tr->mIn = 0;
    tr->mOut = 0;
}

// Prime the reader's ring buffer, and return a result indicating that there
// is text to process.
static int TrLoad(TokenReaderT *tr)
{
    size_t toLoad, in, count;

    toLoad = TR_RING_SIZE - (tr->mIn - tr->mOut);
    if(toLoad >= TR_LOAD_SIZE && !feof(tr->mFile))
    {
        // Load TR_LOAD_SIZE (or less if at the end of the file) per read.
        toLoad = TR_LOAD_SIZE;
        in = tr->mIn&TR_RING_MASK;
        count = TR_RING_SIZE - in;
        if(count < toLoad)
        {
            tr->mIn += fread(&tr->mRing[in], 1, count, tr->mFile);
            tr->mIn += fread(&tr->mRing[0], 1, toLoad-count, tr->mFile);
        }
        else
            tr->mIn += fread(&tr->mRing[in], 1, toLoad, tr->mFile);

        if(tr->mOut >= TR_RING_SIZE)
        {
            tr->mOut -= TR_RING_SIZE;
            tr->mIn -= TR_RING_SIZE;
        }
    }
    if(tr->mIn > tr->mOut)
        return 1;
    return 0;
}

// Error display routine.  Only displays when the base name is not NULL.
static void TrErrorVA(const TokenReaderT *tr, uint line, uint column, const char *format, va_list argPtr)
{
    if(!tr->mName)
        return;
    fprintf(stderr, "\nError (%s:%u:%u): ", tr->mName, line, column);
    vfprintf(stderr, format, argPtr);
}

// Used to display an error at a saved line/column.
static void TrErrorAt(const TokenReaderT *tr, uint line, uint column, const char *format, ...)
{
    va_list argPtr;

    va_start(argPtr, format);
    TrErrorVA(tr, line, column, format, argPtr);
    va_end(argPtr);
}

// Used to display an error at the current line/column.
static void TrError(const TokenReaderT *tr, const char *format, ...)
{
    va_list argPtr;

    va_start(argPtr, format);
    TrErrorVA(tr, tr->mLine, tr->mColumn, format, argPtr);
    va_end(argPtr);
}

// Skips to the next line.
static void TrSkipLine(TokenReaderT *tr)
{
    char ch;

    while(TrLoad(tr))
    {
        ch = tr->mRing[tr->mOut&TR_RING_MASK];
        tr->mOut++;
        if(ch == '\n')
        {
            tr->mLine++;
            tr->mColumn = 1;
            break;
        }
        tr->mColumn ++;
    }
}

// Skips to the next token.
static int TrSkipWhitespace(TokenReaderT *tr)
{
    while(TrLoad(tr))
    {
        char ch{tr->mRing[tr->mOut&TR_RING_MASK]};
        if(isspace(ch))
        {
            tr->mOut++;
            if(ch == '\n')
            {
                tr->mLine++;
                tr->mColumn = 1;
            }
            else
                tr->mColumn++;
        }
        else if(ch == '#')
            TrSkipLine(tr);
        else
            return 1;
    }
    return 0;
}

// Get the line and/or column of the next token (or the end of input).
static void TrIndication(TokenReaderT *tr, uint *line, uint *column)
{
    TrSkipWhitespace(tr);
    if(line) *line = tr->mLine;
    if(column) *column = tr->mColumn;
}

// Checks to see if a token is (likely to be) an identifier.  It does not
// display any errors and will not proceed to the next token.
static int TrIsIdent(TokenReaderT *tr)
{
    if(!TrSkipWhitespace(tr))
        return 0;
    char ch{tr->mRing[tr->mOut&TR_RING_MASK]};
    return ch == '_' || isalpha(ch);
}


// Checks to see if a token is the given operator.  It does not display any
// errors and will not proceed to the next token.
static int TrIsOperator(TokenReaderT *tr, const char *op)
{
    size_t out, len;
    char ch;

    if(!TrSkipWhitespace(tr))
        return 0;
    out = tr->mOut;
    len = 0;
    while(op[len] != '\0' && out < tr->mIn)
    {
        ch = tr->mRing[out&TR_RING_MASK];
        if(ch != op[len]) break;
        len++;
        out++;
    }
    if(op[len] == '\0')
        return 1;
    return 0;
}

/* The TrRead*() routines obtain the value of a matching token type.  They
 * display type, form, and boundary errors and will proceed to the next
 * token.
 */

// Reads and validates an identifier token.
static int TrReadIdent(TokenReaderT *tr, const uint maxLen, char *ident)
{
    uint col, len;
    char ch;

    col = tr->mColumn;
    if(TrSkipWhitespace(tr))
    {
        col = tr->mColumn;
        ch = tr->mRing[tr->mOut&TR_RING_MASK];
        if(ch == '_' || isalpha(ch))
        {
            len = 0;
            do {
                if(len < maxLen)
                    ident[len] = ch;
                len++;
                tr->mOut++;
                if(!TrLoad(tr))
                    break;
                ch = tr->mRing[tr->mOut&TR_RING_MASK];
            } while(ch == '_' || isdigit(ch) || isalpha(ch));

            tr->mColumn += len;
            if(len < maxLen)
            {
                ident[len] = '\0';
                return 1;
            }
            TrErrorAt(tr, tr->mLine, col, "Identifier is too long.\n");
            return 0;
        }
    }
    TrErrorAt(tr, tr->mLine, col, "Expected an identifier.\n");
    return 0;
}

// Reads and validates (including bounds) an integer token.
static int TrReadInt(TokenReaderT *tr, const int loBound, const int hiBound, int *value)
{
    uint col, digis, len;
    char ch, temp[64+1];

    col = tr->mColumn;
    if(TrSkipWhitespace(tr))
    {
        col = tr->mColumn;
        len = 0;
        ch = tr->mRing[tr->mOut&TR_RING_MASK];
        if(ch == '+' || ch == '-')
        {
            temp[len] = ch;
            len++;
            tr->mOut++;
        }
        digis = 0;
        while(TrLoad(tr))
        {
            ch = tr->mRing[tr->mOut&TR_RING_MASK];
            if(!isdigit(ch)) break;
            if(len < 64)
                temp[len] = ch;
            len++;
            digis++;
            tr->mOut++;
        }
        tr->mColumn += len;
        if(digis > 0 && ch != '.' && !isalpha(ch))
        {
            if(len > 64)
            {
                TrErrorAt(tr, tr->mLine, col, "Integer is too long.");
                return 0;
            }
            temp[len] = '\0';
            *value = strtol(temp, nullptr, 10);
            if(*value < loBound || *value > hiBound)
            {
                TrErrorAt(tr, tr->mLine, col, "Expected a value from %d to %d.\n", loBound, hiBound);
                return 0;
            }
            return 1;
        }
    }
    TrErrorAt(tr, tr->mLine, col, "Expected an integer.\n");
    return 0;
}

// Reads and validates (including bounds) a float token.
static int TrReadFloat(TokenReaderT *tr, const double loBound, const double hiBound, double *value)
{
    uint col, digis, len;
    char ch, temp[64+1];

    col = tr->mColumn;
    if(TrSkipWhitespace(tr))
    {
        col = tr->mColumn;
        len = 0;
        ch = tr->mRing[tr->mOut&TR_RING_MASK];
        if(ch == '+' || ch == '-')
        {
            temp[len] = ch;
            len++;
            tr->mOut++;
        }

        digis = 0;
        while(TrLoad(tr))
        {
            ch = tr->mRing[tr->mOut&TR_RING_MASK];
            if(!isdigit(ch)) break;
            if(len < 64)
                temp[len] = ch;
            len++;
            digis++;
            tr->mOut++;
        }
        if(ch == '.')
        {
            if(len < 64)
                temp[len] = ch;
            len++;
            tr->mOut++;
        }
        while(TrLoad(tr))
        {
            ch = tr->mRing[tr->mOut&TR_RING_MASK];
            if(!isdigit(ch)) break;
            if(len < 64)
                temp[len] = ch;
            len++;
            digis++;
            tr->mOut++;
        }
        if(digis > 0)
        {
            if(ch == 'E' || ch == 'e')
            {
                if(len < 64)
                    temp[len] = ch;
                len++;
                digis = 0;
                tr->mOut++;
                if(ch == '+' || ch == '-')
                {
                    if(len < 64)
                        temp[len] = ch;
                    len++;
                    tr->mOut++;
                }
                while(TrLoad(tr))
                {
                    ch = tr->mRing[tr->mOut&TR_RING_MASK];
                    if(!isdigit(ch)) break;
                    if(len < 64)
                        temp[len] = ch;
                    len++;
                    digis++;
                    tr->mOut++;
                }
            }
            tr->mColumn += len;
            if(digis > 0 && ch != '.' && !isalpha(ch))
            {
                if(len > 64)
                {
                    TrErrorAt(tr, tr->mLine, col, "Float is too long.");
                    return 0;
                }
                temp[len] = '\0';
                *value = strtod(temp, nullptr);
                if(*value < loBound || *value > hiBound)
                {
                    TrErrorAt(tr, tr->mLine, col, "Expected a value from %f to %f.\n", loBound, hiBound);
                    return 0;
                }
                return 1;
            }
        }
        else
            tr->mColumn += len;
    }
    TrErrorAt(tr, tr->mLine, col, "Expected a float.\n");
    return 0;
}

// Reads and validates a string token.
static int TrReadString(TokenReaderT *tr, const uint maxLen, char *text)
{
    uint col, len;
    char ch;

    col = tr->mColumn;
    if(TrSkipWhitespace(tr))
    {
        col = tr->mColumn;
        ch = tr->mRing[tr->mOut&TR_RING_MASK];
        if(ch == '\"')
        {
            tr->mOut++;
            len = 0;
            while(TrLoad(tr))
            {
                ch = tr->mRing[tr->mOut&TR_RING_MASK];
                tr->mOut++;
                if(ch == '\"')
                    break;
                if(ch == '\n')
                {
                    TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of line.\n");
                    return 0;
                }
                if(len < maxLen)
                    text[len] = ch;
                len++;
            }
            if(ch != '\"')
            {
                tr->mColumn += 1 + len;
                TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of input.\n");
                return 0;
            }
            tr->mColumn += 2 + len;
            if(len > maxLen)
            {
                TrErrorAt(tr, tr->mLine, col, "String is too long.\n");
                return 0;
            }
            text[len] = '\0';
            return 1;
        }
    }
    TrErrorAt(tr, tr->mLine, col, "Expected a string.\n");
    return 0;
}

// Reads and validates the given operator.
static int TrReadOperator(TokenReaderT *tr, const char *op)
{
    uint col, len;
    char ch;

    col = tr->mColumn;
    if(TrSkipWhitespace(tr))
    {
        col = tr->mColumn;
        len = 0;
        while(op[len] != '\0' && TrLoad(tr))
        {
            ch = tr->mRing[tr->mOut&TR_RING_MASK];
            if(ch != op[len]) break;
            len++;
            tr->mOut++;
        }
        tr->mColumn += len;
        if(op[len] == '\0')
            return 1;
    }
    TrErrorAt(tr, tr->mLine, col, "Expected '%s' operator.\n", op);
    return 0;
}

/* Performs a string substitution.  Any case-insensitive occurrences of the
 * pattern string are replaced with the replacement string.  The result is
 * truncated if necessary.
 */
static int StrSubst(const char *in, const char *pat, const char *rep, const size_t maxLen, char *out)
{
    size_t inLen, patLen, repLen;
    size_t si, di;
    int truncated;

    inLen = strlen(in);
    patLen = strlen(pat);
    repLen = strlen(rep);
    si = 0;
    di = 0;
    truncated = 0;
    while(si < inLen && di < maxLen)
    {
        if(patLen <= inLen-si)
        {
            if(strncasecmp(&in[si], pat, patLen) == 0)
            {
                if(repLen > maxLen-di)
                {
                    repLen = maxLen - di;
                    truncated = 1;
                }
                strncpy(&out[di], rep, repLen);
                si += patLen;
                di += repLen;
            }
        }
        out[di] = in[si];
        si++;
        di++;
    }
    if(si < inLen)
        truncated = 1;
    out[di] = '\0';
    return !truncated;
}


/*********************
 *** Math routines ***
 *********************/

// Simple clamp routine.
static double Clamp(const double val, const double lower, const double upper)
{
    return std::min(std::max(val, lower), upper);
}

// Performs linear interpolation.
static double Lerp(const double a, const double b, const double f)
{
    return a + f * (b - a);
}

static inline uint dither_rng(uint *seed)
{
    *seed = *seed * 96314165 + 907633515;
    return *seed;
}

// Performs a triangular probability density function dither. The input samples
// should be normalized (-1 to +1).
static void TpdfDither(double *RESTRICT out, const double *RESTRICT in, const double scale,
                       const int count, const int step, uint *seed)
{
    static constexpr double PRNG_SCALE = 1.0 / std::numeric_limits<uint>::max();

    for(int i{0};i < count;i++)
    {
        uint prn0{dither_rng(seed)};
        uint prn1{dither_rng(seed)};
        out[i*step] = std::round(in[i]*scale + (prn0*PRNG_SCALE - prn1*PRNG_SCALE));
    }
}

/* Fast Fourier transform routines. The number of points must be a power of
 * two.
 */

// Performs bit-reversal ordering.
static void FftArrange(const uint n, complex_d *inout)
{
    // Handle in-place arrangement.
    uint rk{0u};
    for(uint k{0u};k < n;k++)
    {
        if(rk > k)
            std::swap(inout[rk], inout[k]);

        uint m{n};
        while(rk&(m >>= 1))
            rk &= ~m;
        rk |= m;
    }
}

// Performs the summation.
static void FftSummation(const int n, const double s, complex_d *cplx)
{
    double pi;
    int m, m2;
    int i, k, mk;

    pi = s * M_PI;
    for(m = 1, m2 = 2;m < n; m <<= 1, m2 <<= 1)
    {
        // v = Complex (-2.0 * sin (0.5 * pi / m) * sin (0.5 * pi / m), -sin (pi / m))
        double sm = sin(0.5 * pi / m);
        auto v = complex_d{-2.0*sm*sm, -sin(pi / m)};
        auto w = complex_d{1.0, 0.0};
        for(i = 0;i < m;i++)
        {
            for(k = i;k < n;k += m2)
            {
                mk = k + m;
                auto t = w * cplx[mk];
                cplx[mk] = cplx[k] - t;
                cplx[k] = cplx[k] + t;
            }
            w += v*w;
        }
    }
}

// Performs a forward FFT.
static void FftForward(const uint n, complex_d *inout)
{
    FftArrange(n, inout);
    FftSummation(n, 1.0, inout);
}

// Performs an inverse FFT.
static void FftInverse(const uint n, complex_d *inout)
{
    FftArrange(n, inout);
    FftSummation(n, -1.0, inout);
    double f{1.0 / n};
    for(uint i{0};i < n;i++)
        inout[i] *= f;
}

/* Calculate the complex helical sequence (or discrete-time analytical signal)
 * of the given input using the Hilbert transform. Given the natural logarithm
 * of a signal's magnitude response, the imaginary components can be used as
 * the angles for minimum-phase reconstruction.
 */
static void Hilbert(const uint n, complex_d *inout)
{
    uint i;

    // Handle in-place operation.
    for(i = 0;i < n;i++)
        inout[i].imag(0.0);

    FftInverse(n, inout);
    for(i = 1;i < (n+1)/2;i++)
        inout[i] *= 2.0;
    /* Increment i if n is even. */
    i += (n&1)^1;
    for(;i < n;i++)
        inout[i] = complex_d{0.0, 0.0};
    FftForward(n, inout);
}

/* Calculate the magnitude response of the given input.  This is used in
 * place of phase decomposition, since the phase residuals are discarded for
 * minimum phase reconstruction.  The mirrored half of the response is also
 * discarded.
 */
static void MagnitudeResponse(const uint n, const complex_d *in, double *out)
{
    const uint m = 1 + (n / 2);
    uint i;
    for(i = 0;i < m;i++)
        out[i] = std::max(std::abs(in[i]), EPSILON);
}

/* Apply a range limit (in dB) to the given magnitude response.  This is used
 * to adjust the effects of the diffuse-field average on the equalization
 * process.
 */
static void LimitMagnitudeResponse(const uint n, const uint m, const double limit, const double *in, double *out)
{
    double halfLim;
    uint i, lower, upper;
    double ave;

    halfLim = limit / 2.0;
    // Convert the response to dB.
    for(i = 0;i < m;i++)
        out[i] = 20.0 * std::log10(in[i]);
    // Use six octaves to calculate the average magnitude of the signal.
    lower = (static_cast<uint>(std::ceil(n / std::pow(2.0, 8.0)))) - 1;
    upper = (static_cast<uint>(std::floor(n / std::pow(2.0, 2.0)))) - 1;
    ave = 0.0;
    for(i = lower;i <= upper;i++)
        ave += out[i];
    ave /= upper - lower + 1;
    // Keep the response within range of the average magnitude.
    for(i = 0;i < m;i++)
        out[i] = Clamp(out[i], ave - halfLim, ave + halfLim);
    // Convert the response back to linear magnitude.
    for(i = 0;i < m;i++)
        out[i] = std::pow(10.0, out[i] / 20.0);
}

/* Reconstructs the minimum-phase component for the given magnitude response
 * of a signal.  This is equivalent to phase recomposition, sans the missing
 * residuals (which were discarded).  The mirrored half of the response is
 * reconstructed.
 */
static void MinimumPhase(const uint n, const double *in, complex_d *out)
{
    const uint m = 1 + (n / 2);
    std::vector<double> mags(n);

    uint i;
    for(i = 0;i < m;i++)
    {
        mags[i] = std::max(EPSILON, in[i]);
        out[i] = complex_d{std::log(mags[i]), 0.0};
    }
    for(;i < n;i++)
    {
        mags[i] = mags[n - i];
        out[i] = out[n - i];
    }
    Hilbert(n, out);
    // Remove any DC offset the filter has.
    mags[0] = EPSILON;
    for(i = 0;i < n;i++)
    {
        auto a = std::exp(complex_d{0.0, out[i].imag()});
        out[i] = complex_d{mags[i], 0.0} * a;
    }
}


/***************************
 *** Resampler functions ***
 ***************************/

/* This is the normalized cardinal sine (sinc) function.
 *
 *   sinc(x) = { 1,                   x = 0
 *             { sin(pi x) / (pi x),  otherwise.
 */
static double Sinc(const double x)
{
    if(std::abs(x) < EPSILON)
        return 1.0;
    return std::sin(M_PI * x) / (M_PI * x);
}

/* The zero-order modified Bessel function of the first kind, used for the
 * Kaiser window.
 *
 *   I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k)
 *          = sum_{k=0}^inf ((x / 2)^k / k!)^2
 */
static double BesselI_0(const double x)
{
    double term, sum, x2, y, last_sum;
    int k;

    // Start at k=1 since k=0 is trivial.
    term = 1.0;
    sum = 1.0;
    x2 = x/2.0;
    k = 1;

    // Let the integration converge until the term of the sum is no longer
    // significant.
    do {
        y = x2 / k;
        k++;
        last_sum = sum;
        term *= y * y;
        sum += term;
    } while(sum != last_sum);
    return sum;
}

/* Calculate a Kaiser window from the given beta value and a normalized k
 * [-1, 1].
 *
 *   w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B),  -1 <= k <= 1
 *          { 0,                              elsewhere.
 *
 * Where k can be calculated as:
 *
 *   k = i / l,         where -l <= i <= l.
 *
 * or:
 *
 *   k = 2 i / M - 1,   where 0 <= i <= M.
 */
static double Kaiser(const double b, const double k)
{
    if(!(k >= -1.0 && k <= 1.0))
        return 0.0;
    return BesselI_0(b * std::sqrt(1.0 - k*k)) / BesselI_0(b);
}

// Calculates the greatest common divisor of a and b.
static uint Gcd(uint x, uint y)
{
    while(y > 0)
    {
        uint z{y};
        y = x % y;
        x = z;
    }
    return x;
}

/* Calculates the size (order) of the Kaiser window.  Rejection is in dB and
 * the transition width is normalized frequency (0.5 is nyquist).
 *
 *   M = { ceil((r - 7.95) / (2.285 2 pi f_t)),  r > 21
 *       { ceil(5.79 / 2 pi f_t),                r <= 21.
 *
 */
static uint CalcKaiserOrder(const double rejection, const double transition)
{
    double w_t = 2.0 * M_PI * transition;
    if(rejection > 21.0)
        return static_cast<uint>(std::ceil((rejection - 7.95) / (2.285 * w_t)));
    return static_cast<uint>(std::ceil(5.79 / w_t));
}

// Calculates the beta value of the Kaiser window.  Rejection is in dB.
static double CalcKaiserBeta(const double rejection)
{
    if(rejection > 50.0)
        return 0.1102 * (rejection - 8.7);
    if(rejection >= 21.0)
        return (0.5842 * std::pow(rejection - 21.0, 0.4)) +
               (0.07886 * (rejection - 21.0));
    return 0.0;
}

/* Calculates a point on the Kaiser-windowed sinc filter for the given half-
 * width, beta, gain, and cutoff.  The point is specified in non-normalized
 * samples, from 0 to M, where M = (2 l + 1).
 *
 *   w(k) 2 p f_t sinc(2 f_t x)
 *
 *   x    -- centered sample index (i - l)
 *   k    -- normalized and centered window index (x / l)
 *   w(k) -- window function (Kaiser)
 *   p    -- gain compensation factor when sampling
 *   f_t  -- normalized center frequency (or cutoff; 0.5 is nyquist)
 */
static double SincFilter(const int l, const double b, const double gain, const double cutoff, const int i)
{
    return Kaiser(b, static_cast<double>(i - l) / l) * 2.0 * gain * cutoff * Sinc(2.0 * cutoff * (i - l));
}

/* This is a polyphase sinc-filtered resampler.
 *
 *              Upsample                      Downsample
 *
 *              p/q = 3/2                     p/q = 3/5
 *
 *          M-+-+-+->                     M-+-+-+->
 *         -------------------+          ---------------------+
 *   p  s * f f f f|f|        |    p  s * f f f f f           |
 *   |  0 *   0 0 0|0|0       |    |  0 *   0 0 0 0|0|        |
 *   v  0 *     0 0|0|0 0     |    v  0 *     0 0 0|0|0       |
 *      s *       f|f|f f f   |       s *       f f|f|f f     |
 *      0 *        |0|0 0 0 0 |       0 *         0|0|0 0 0   |
 *         --------+=+--------+       0 *          |0|0 0 0 0 |
 *          d . d .|d|. d . d            ----------+=+--------+
 *                                        d . . . .|d|. . . .
 *          q->
 *                                        q-+-+-+->
 *
 *   P_f(i,j) = q i mod p + pj
 *   P_s(i,j) = floor(q i / p) - j
 *   d[i=0..N-1] = sum_{j=0}^{floor((M - 1) / p)} {
 *                   { f[P_f(i,j)] s[P_s(i,j)],  P_f(i,j) < M
 *                   { 0,                        P_f(i,j) >= M. }
 */

// Calculate the resampling metrics and build the Kaiser-windowed sinc filter
// that's used to cut frequencies above the destination nyquist.
static void ResamplerSetup(ResamplerT *rs, const uint srcRate, const uint dstRate)
{
    double cutoff, width, beta;
    uint gcd, l;
    int i;

    gcd = Gcd(srcRate, dstRate);
    rs->mP = dstRate / gcd;
    rs->mQ = srcRate / gcd;
    /* The cutoff is adjusted by half the transition width, so the transition
     * ends before the nyquist (0.5).  Both are scaled by the downsampling
     * factor.
     */
    if(rs->mP > rs->mQ)
    {
        cutoff = 0.475 / rs->mP;
        width = 0.05 / rs->mP;
    }
    else
    {
        cutoff = 0.475 / rs->mQ;
        width = 0.05 / rs->mQ;
    }
    // A rejection of -180 dB is used for the stop band. Round up when
    // calculating the left offset to avoid increasing the transition width.
    l = (CalcKaiserOrder(180.0, width)+1) / 2;
    beta = CalcKaiserBeta(180.0);
    rs->mM = l*2 + 1;
    rs->mL = l;
    rs->mF.resize(rs->mM);
    for(i = 0;i < (static_cast<int>(rs->mM));i++)
        rs->mF[i] = SincFilter(static_cast<int>(l), beta, rs->mP, cutoff, i);
}

// Perform the upsample-filter-downsample resampling operation using a
// polyphase filter implementation.
static void ResamplerRun(ResamplerT *rs, const uint inN, const double *in, const uint outN, double *out)
{
    const uint p = rs->mP, q = rs->mQ, m = rs->mM, l = rs->mL;
    std::vector<double> workspace;
    const double *f = rs->mF.data();
    uint j_f, j_s;
    double *work;
    uint i;

    if(outN == 0)
        return;

    // Handle in-place operation.
    if(in == out)
    {
        workspace.resize(outN);
        work = workspace.data();
    }
    else
        work = out;
    // Resample the input.
    for(i = 0;i < outN;i++)
    {
        double r = 0.0;
        // Input starts at l to compensate for the filter delay.  This will
        // drop any build-up from the first half of the filter.
        j_f = (l + (q * i)) % p;
        j_s = (l + (q * i)) / p;
        while(j_f < m)
        {
            // Only take input when 0 <= j_s < inN.  This single unsigned
            // comparison catches both cases.
            if(j_s < inN)
                r += f[j_f] * in[j_s];
            j_f += p;
            j_s--;
        }
        work[i] = r;
    }
    // Clean up after in-place operation.
    if(work != out)
    {
        for(i = 0;i < outN;i++)
            out[i] = work[i];
    }
}

/*************************
 *** File source input ***
 *************************/

// Read a binary value of the specified byte order and byte size from a file,
// storing it as a 32-bit unsigned integer.
static int ReadBin4(FILE *fp, const char *filename, const ByteOrderT order, const uint bytes, uint32_t *out)
{
    uint8_t in[4];
    uint32_t accum;
    uint i;

    if(fread(in, 1, bytes, fp) != bytes)
    {
        fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
        return 0;
    }
    accum = 0;
    switch(order)
    {
        case BO_LITTLE:
            for(i = 0;i < bytes;i++)
                accum = (accum<<8) | in[bytes - i - 1];
            break;
        case BO_BIG:
            for(i = 0;i < bytes;i++)
                accum = (accum<<8) | in[i];
            break;
        default:
            break;
    }
    *out = accum;
    return 1;
}

// Read a binary value of the specified byte order from a file, storing it as
// a 64-bit unsigned integer.
static int ReadBin8(FILE *fp, const char *filename, const ByteOrderT order, uint64_t *out)
{
    uint8_t in[8];
    uint64_t accum;
    uint i;

    if(fread(in, 1, 8, fp) != 8)
    {
        fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
        return 0;
    }
    accum = 0ULL;
    switch(order)
    {
        case BO_LITTLE:
            for(i = 0;i < 8;i++)
                accum = (accum<<8) | in[8 - i - 1];
            break;
        case BO_BIG:
            for(i = 0;i < 8;i++)
                accum = (accum<<8) | in[i];
            break;
        default:
            break;
    }
    *out = accum;
    return 1;
}

/* Read a binary value of the specified type, byte order, and byte size from
 * a file, converting it to a double.  For integer types, the significant
 * bits are used to normalize the result.  The sign of bits determines
 * whether they are padded toward the MSB (negative) or LSB (positive).
 * Floating-point types are not normalized.
 */
static int ReadBinAsDouble(FILE *fp, const char *filename, const ByteOrderT order, const ElementTypeT type, const uint bytes, const int bits, double *out)
{
    union {
        uint32_t ui;
        int32_t i;
        float f;
    } v4;
    union {
        uint64_t ui;
        double f;
    } v8;

    *out = 0.0;
    if(bytes > 4)
    {
        if(!ReadBin8(fp, filename, order, &v8.ui))
            return 0;
        if(type == ET_FP)
            *out = v8.f;
    }
    else
    {
        if(!ReadBin4(fp, filename, order, bytes, &v4.ui))
            return 0;
        if(type == ET_FP)
            *out = v4.f;
        else
        {
            if(bits > 0)
                v4.ui >>= (8*bytes) - (static_cast<uint>(bits));
            else
                v4.ui &= (0xFFFFFFFF >> (32+bits));

            if(v4.ui&static_cast<uint>(1<<(std::abs(bits)-1)))
                v4.ui |= (0xFFFFFFFF << std::abs(bits));
            *out = v4.i / static_cast<double>(1<<(std::abs(bits)-1));
        }
    }
    return 1;
}

/* Read an ascii value of the specified type from a file, converting it to a
 * double.  For integer types, the significant bits are used to normalize the
 * result.  The sign of the bits should always be positive.  This also skips
 * up to one separator character before the element itself.
 */
static int ReadAsciiAsDouble(TokenReaderT *tr, const char *filename, const ElementTypeT type, const uint bits, double *out)
{
    if(TrIsOperator(tr, ","))
        TrReadOperator(tr, ",");
    else if(TrIsOperator(tr, ":"))
        TrReadOperator(tr, ":");
    else if(TrIsOperator(tr, ";"))
        TrReadOperator(tr, ";");
    else if(TrIsOperator(tr, "|"))
        TrReadOperator(tr, "|");

    if(type == ET_FP)
    {
        if(!TrReadFloat(tr, -std::numeric_limits<double>::infinity(),
            std::numeric_limits<double>::infinity(), out))
        {
            fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
            return 0;
        }
    }
    else
    {
        int v;
        if(!TrReadInt(tr, -(1<<(bits-1)), (1<<(bits-1))-1, &v))
        {
            fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
            return 0;
        }
        *out = v / static_cast<double>((1<<(bits-1))-1);
    }
    return 1;
}

// Read the RIFF/RIFX WAVE format chunk from a file, validating it against
// the source parameters and data set metrics.
static int ReadWaveFormat(FILE *fp, const ByteOrderT order, const uint hrirRate, SourceRefT *src)
{
    uint32_t fourCC, chunkSize;
    uint32_t format, channels, rate, dummy, block, size, bits;

    chunkSize = 0;
    do {
        if(chunkSize > 0)
            fseek(fp, static_cast<long>(chunkSize), SEEK_CUR);
        if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
           !ReadBin4(fp, src->mPath, order, 4, &chunkSize))
            return 0;
    } while(fourCC != FOURCC_FMT);
    if(!ReadBin4(fp, src->mPath, order, 2, &format) ||
       !ReadBin4(fp, src->mPath, order, 2, &channels) ||
       !ReadBin4(fp, src->mPath, order, 4, &rate) ||
       !ReadBin4(fp, src->mPath, order, 4, &dummy) ||
       !ReadBin4(fp, src->mPath, order, 2, &block))
        return 0;
    block /= channels;
    if(chunkSize > 14)
    {
        if(!ReadBin4(fp, src->mPath, order, 2, &size))
            return 0;
        size /= 8;
        if(block > size)
            size = block;
    }
    else
        size = block;
    if(format == WAVE_FORMAT_EXTENSIBLE)
    {
        fseek(fp, 2, SEEK_CUR);
        if(!ReadBin4(fp, src->mPath, order, 2, &bits))
            return 0;
        if(bits == 0)
            bits = 8 * size;
        fseek(fp, 4, SEEK_CUR);
        if(!ReadBin4(fp, src->mPath, order, 2, &format))
            return 0;
        fseek(fp, static_cast<long>(chunkSize - 26), SEEK_CUR);
    }
    else
    {
        bits = 8 * size;
        if(chunkSize > 14)
            fseek(fp, static_cast<long>(chunkSize - 16), SEEK_CUR);
        else
            fseek(fp, static_cast<long>(chunkSize - 14), SEEK_CUR);
    }
    if(format != WAVE_FORMAT_PCM && format != WAVE_FORMAT_IEEE_FLOAT)
    {
        fprintf(stderr, "\nError: Unsupported WAVE format in file '%s'.\n", src->mPath);
        return 0;
    }
    if(src->mChannel >= channels)
    {
        fprintf(stderr, "\nError: Missing source channel in WAVE file '%s'.\n", src->mPath);
        return 0;
    }
    if(rate != hrirRate)
    {
        fprintf(stderr, "\nError: Mismatched source sample rate in WAVE file '%s'.\n", src->mPath);
        return 0;
    }
    if(format == WAVE_FORMAT_PCM)
    {
        if(size < 2 || size > 4)
        {
            fprintf(stderr, "\nError: Unsupported sample size in WAVE file '%s'.\n", src->mPath);
            return 0;
        }
        if(bits < 16 || bits > (8*size))
        {
            fprintf(stderr, "\nError: Bad significant bits in WAVE file '%s'.\n", src->mPath);
            return 0;
        }
        src->mType = ET_INT;
    }
    else
    {
        if(size != 4 && size != 8)
        {
            fprintf(stderr, "\nError: Unsupported sample size in WAVE file '%s'.\n", src->mPath);
            return 0;
        }
        src->mType = ET_FP;
    }
    src->mSize = size;
    src->mBits = static_cast<int>(bits);
    src->mSkip = channels;
    return 1;
}

// Read a RIFF/RIFX WAVE data chunk, converting all elements to doubles.
static int ReadWaveData(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
{
    int pre, post, skip;
    uint i;

    pre = static_cast<int>(src->mSize * src->mChannel);
    post = static_cast<int>(src->mSize * (src->mSkip - src->mChannel - 1));
    skip = 0;
    for(i = 0;i < n;i++)
    {
        skip += pre;
        if(skip > 0)
            fseek(fp, skip, SEEK_CUR);
        if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i]))
            return 0;
        skip = post;
    }
    if(skip > 0)
        fseek(fp, skip, SEEK_CUR);
    return 1;
}

// Read the RIFF/RIFX WAVE list or data chunk, converting all elements to
// doubles.
static int ReadWaveList(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
{
    uint32_t fourCC, chunkSize, listSize, count;
    uint block, skip, offset, i;
    double lastSample;

    for(;;)
    {
        if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
           !ReadBin4(fp, src->mPath, order, 4, &chunkSize))
            return 0;

        if(fourCC == FOURCC_DATA)
        {
            block = src->mSize * src->mSkip;
            count = chunkSize / block;
            if(count < (src->mOffset + n))
            {
                fprintf(stderr, "\nError: Bad read from file '%s'.\n", src->mPath);
                return 0;
            }
            fseek(fp, static_cast<long>(src->mOffset * block), SEEK_CUR);
            if(!ReadWaveData(fp, src, order, n, &hrir[0]))
                return 0;
            return 1;
        }
        else if(fourCC == FOURCC_LIST)
        {
            if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC))
                return 0;
            chunkSize -= 4;
            if(fourCC == FOURCC_WAVL)
                break;
        }
        if(chunkSize > 0)
            fseek(fp, static_cast<long>(chunkSize), SEEK_CUR);
    }
    listSize = chunkSize;
    block = src->mSize * src->mSkip;
    skip = src->mOffset;
    offset = 0;
    lastSample = 0.0;
    while(offset < n && listSize > 8)
    {
        if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
           !ReadBin4(fp, src->mPath, order, 4, &chunkSize))
            return 0;
        listSize -= 8 + chunkSize;
        if(fourCC == FOURCC_DATA)
        {
            count = chunkSize / block;
            if(count > skip)
            {
                fseek(fp, static_cast<long>(skip * block), SEEK_CUR);
                chunkSize -= skip * block;
                count -= skip;
                skip = 0;
                if(count > (n - offset))
                    count = n - offset;
                if(!ReadWaveData(fp, src, order, count, &hrir[offset]))
                    return 0;
                chunkSize -= count * block;
                offset += count;
                lastSample = hrir[offset - 1];
            }
            else
            {
                skip -= count;
                count = 0;
            }
        }
        else if(fourCC == FOURCC_SLNT)
        {
            if(!ReadBin4(fp, src->mPath, order, 4, &count))
                return 0;
            chunkSize -= 4;
            if(count > skip)
            {
                count -= skip;
                skip = 0;
                if(count > (n - offset))
                    count = n - offset;
                for(i = 0; i < count; i ++)
                    hrir[offset + i] = lastSample;
                offset += count;
            }
            else
            {
                skip -= count;
                count = 0;
            }
        }
        if(chunkSize > 0)
            fseek(fp, static_cast<long>(chunkSize), SEEK_CUR);
    }
    if(offset < n)
    {
        fprintf(stderr, "\nError: Bad read from file '%s'.\n", src->mPath);
        return 0;
    }
    return 1;
}

// Load a source HRIR from an ASCII text file containing a list of elements
// separated by whitespace or common list operators (',', ';', ':', '|').
static int LoadAsciiSource(FILE *fp, const SourceRefT *src, const uint n, double *hrir)
{
    TokenReaderT tr;
    uint i, j;
    double dummy;

    TrSetup(fp, nullptr, &tr);
    for(i = 0;i < src->mOffset;i++)
    {
        if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast<uint>(src->mBits), &dummy))
            return 0;
    }
    for(i = 0;i < n;i++)
    {
        if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast<uint>(src->mBits), &hrir[i]))
            return 0;
        for(j = 0;j < src->mSkip;j++)
        {
            if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast<uint>(src->mBits), &dummy))
                return 0;
        }
    }
    return 1;
}

// Load a source HRIR from a binary file.
static int LoadBinarySource(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
{
    uint i;

    fseek(fp, static_cast<long>(src->mOffset), SEEK_SET);
    for(i = 0;i < n;i++)
    {
        if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i]))
            return 0;
        if(src->mSkip > 0)
            fseek(fp, static_cast<long>(src->mSkip), SEEK_CUR);
    }
    return 1;
}

// Load a source HRIR from a RIFF/RIFX WAVE file.
static int LoadWaveSource(FILE *fp, SourceRefT *src, const uint hrirRate, const uint n, double *hrir)
{
    uint32_t fourCC, dummy;
    ByteOrderT order;

    if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
       !ReadBin4(fp, src->mPath, BO_LITTLE, 4, &dummy))
        return 0;
    if(fourCC == FOURCC_RIFF)
        order = BO_LITTLE;
    else if(fourCC == FOURCC_RIFX)
        order = BO_BIG;
    else
    {
        fprintf(stderr, "\nError: No RIFF/RIFX chunk in file '%s'.\n", src->mPath);
        return 0;
    }

    if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC))
        return 0;
    if(fourCC != FOURCC_WAVE)
    {
        fprintf(stderr, "\nError: Not a RIFF/RIFX WAVE file '%s'.\n", src->mPath);
        return 0;
    }
    if(!ReadWaveFormat(fp, order, hrirRate, src))
        return 0;
    if(!ReadWaveList(fp, src, order, n, hrir))
        return 0;
    return 1;
}

// Load a Spatially Oriented Format for Accoustics (SOFA) file.
static struct MYSOFA_EASY* LoadSofaFile(SourceRefT *src, const uint hrirRate, const uint n)
{
    struct MYSOFA_EASY *sofa{mysofa_cache_lookup(src->mPath, (float)hrirRate)};
    if(sofa) return sofa;

    sofa = static_cast<MYSOFA_EASY*>(calloc(1, sizeof(*sofa)));
    if(sofa == nullptr)
    {
        fprintf(stderr, "\nError:  Out of memory.\n");
        return nullptr;
    }
    sofa->lookup = nullptr;
    sofa->neighborhood = nullptr;

    int err;
    sofa->hrtf = mysofa_load(src->mPath, &err);
    if(!sofa->hrtf)
    {
        mysofa_close(sofa);
        fprintf(stderr, "\nError: Could not load source file '%s'.\n", src->mPath);
        return nullptr;
    }
    err = mysofa_check(sofa->hrtf);
    if(err != MYSOFA_OK)
/* NOTE: Some valid SOFA files are failing this check.
    {
        mysofa_close(sofa);
        fprintf(stderr, "\nError: Malformed source file '%s'.\n", src->mPath);
        return nullptr;
    }*/
        fprintf(stderr, "\nWarning: Supposedly malformed source file '%s'.\n", src->mPath);
    if((src->mOffset + n) > sofa->hrtf->N)
    {
        mysofa_close(sofa);
        fprintf(stderr, "\nError: Not enough samples in SOFA file '%s'.\n", src->mPath);
        return nullptr;
    }
    if(src->mChannel >= sofa->hrtf->R)
    {
        mysofa_close(sofa);
        fprintf(stderr, "\nError: Missing source receiver in SOFA file '%s'.\n", src->mPath);
        return nullptr;
    }
    mysofa_tocartesian(sofa->hrtf);
    sofa->lookup = mysofa_lookup_init(sofa->hrtf);
    if(sofa->lookup == nullptr)
    {
        mysofa_close(sofa);
        fprintf(stderr, "\nError:  Out of memory.\n");
        return nullptr;
    }
    return mysofa_cache_store(sofa, src->mPath, (float)hrirRate);
}

// Copies the HRIR data from a particular SOFA measurement.
static void ExtractSofaHrir(const struct MYSOFA_EASY *sofa, const uint index, const uint channel, const uint offset, const uint n, double *hrir)
{
    for(uint i{0u};i < n;i++)
        hrir[i] = sofa->hrtf->DataIR.values[(index*sofa->hrtf->R + channel)*sofa->hrtf->N + offset + i];
}

// Load a source HRIR from a Spatially Oriented Format for Accoustics (SOFA)
// file.
static int LoadSofaSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir)
{
    struct MYSOFA_EASY *sofa;
    float target[3];
    int nearest;
    float *coords;

    sofa = LoadSofaFile(src, hrirRate, n);
    if(sofa == nullptr)
        return 0;

    /* NOTE: At some point it may be benficial or necessary to consider the
             various coordinate systems, listener/source orientations, and
             direciontal vectors defined in the SOFA file.
    */
    target[0] = src->mAzimuth;
    target[1] = src->mElevation;
    target[2] = src->mRadius;
    mysofa_s2c(target);

    nearest = mysofa_lookup(sofa->lookup, target);
    if(nearest < 0)
    {
        fprintf(stderr, "\nError: Lookup failed in source file '%s'.\n", src->mPath);
        return 0;
    }

    coords = &sofa->hrtf->SourcePosition.values[3 * nearest];
    if(std::fabs(coords[0] - target[0]) > 0.001 || std::fabs(coords[1] - target[1]) > 0.001 || std::fabs(coords[2] - target[2]) > 0.001)
    {
        fprintf(stderr, "\nError: No impulse response at coordinates (%.3fr, %.1fev, %.1faz) in file '%s'.\n", src->mRadius, src->mElevation, src->mAzimuth, src->mPath);
        target[0] = coords[0];
        target[1] = coords[1];
        target[2] = coords[2];
        mysofa_c2s(target);
        fprintf(stderr, "       Nearest candidate at (%.3fr, %.1fev, %.1faz).\n", target[2], target[1], target[0]);
        return 0;
    }

    ExtractSofaHrir(sofa, nearest, src->mChannel, src->mOffset, n, hrir);

     return 1;
}

// Load a source HRIR from a supported file type.
static int LoadSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir)
{
    FILE *fp{nullptr};
    if(src->mFormat != SF_SOFA)
    {
        if(src->mFormat == SF_ASCII)
            fp = fopen(src->mPath, "r");
        else
            fp = fopen(src->mPath, "rb");
        if(fp == nullptr)
        {
            fprintf(stderr, "\nError: Could not open source file '%s'.\n", src->mPath);
            return 0;
        }
    }
    int result;
    switch(src->mFormat)
    {
        case SF_ASCII:
            result = LoadAsciiSource(fp, src, n, hrir);
            break;
        case SF_BIN_LE:
            result = LoadBinarySource(fp, src, BO_LITTLE, n, hrir);
            break;
        case SF_BIN_BE:
            result = LoadBinarySource(fp, src, BO_BIG, n, hrir);
            break;
        case SF_WAVE:
            result = LoadWaveSource(fp, src, hrirRate, n, hrir);
            break;
        case SF_SOFA:
            result = LoadSofaSource(src, hrirRate, n, hrir);
            break;
        default:
            result = 0;
    }
    if(fp) fclose(fp);
    return result;
}


/***************************
 *** File storage output ***
 ***************************/

// Write an ASCII string to a file.
static int WriteAscii(const char *out, FILE *fp, const char *filename)
{
    size_t len;

    len = strlen(out);
    if(fwrite(out, 1, len, fp) != len)
    {
        fclose(fp);
        fprintf(stderr, "\nError: Bad write to file '%s'.\n", filename);
        return 0;
    }
    return 1;
}

// Write a binary value of the given byte order and byte size to a file,
// loading it from a 32-bit unsigned integer.
static int WriteBin4(const ByteOrderT order, const uint bytes, const uint32_t in, FILE *fp, const char *filename)
{
    uint8_t out[4];
    uint i;

    switch(order)
    {
        case BO_LITTLE:
            for(i = 0;i < bytes;i++)
                out[i] = (in>>(i*8)) & 0x000000FF;
            break;
        case BO_BIG:
            for(i = 0;i < bytes;i++)
                out[bytes - i - 1] = (in>>(i*8)) & 0x000000FF;
            break;
        default:
            break;
    }
    if(fwrite(out, 1, bytes, fp) != bytes)
    {
        fprintf(stderr, "\nError: Bad write to file '%s'.\n", filename);
        return 0;
    }
    return 1;
}

// Store the OpenAL Soft HRTF data set.
static int StoreMhr(const HrirDataT *hData, const char *filename)
{
    uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
    uint n = hData->mIrPoints;
    FILE *fp;
    uint fi, ei, ai, i;
    uint dither_seed = 22222;

    if((fp=fopen(filename, "wb")) == nullptr)
    {
        fprintf(stderr, "\nError: Could not open MHR file '%s'.\n", filename);
        return 0;
    }
    if(!WriteAscii(MHR_FORMAT, fp, filename))
        return 0;
    if(!WriteBin4(BO_LITTLE, 4, hData->mIrRate, fp, filename))
        return 0;
    if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(hData->mSampleType), fp, filename))
        return 0;
    if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(hData->mChannelType), fp, filename))
        return 0;
    if(!WriteBin4(BO_LITTLE, 1, hData->mIrPoints, fp, filename))
        return 0;
    if(!WriteBin4(BO_LITTLE, 1, hData->mFdCount, fp, filename))
        return 0;
    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        auto fdist = static_cast<uint32_t>(std::round(1000.0 * hData->mFds[fi].mDistance));
        if(!WriteBin4(BO_LITTLE, 2, fdist, fp, filename))
            return 0;
        if(!WriteBin4(BO_LITTLE, 1, hData->mFds[fi].mEvCount, fp, filename))
            return 0;
        for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
        {
            if(!WriteBin4(BO_LITTLE, 1, hData->mFds[fi].mEvs[ei].mAzCount, fp, filename))
                return 0;
        }
    }

    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        const double scale = (hData->mSampleType == ST_S16) ? 32767.0 :
                             ((hData->mSampleType == ST_S24) ? 8388607.0 : 0.0);
        const int bps = (hData->mSampleType == ST_S16) ? 2 :
                        ((hData->mSampleType == ST_S24) ? 3 : 0);

        for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
        {
            for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
            {
                HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
                double out[2 * MAX_TRUNCSIZE];

                TpdfDither(out, azd->mIrs[0], scale, n, channels, &dither_seed);
                if(hData->mChannelType == CT_STEREO)
                    TpdfDither(out+1, azd->mIrs[1], scale, n, channels, &dither_seed);
                for(i = 0;i < (channels * n);i++)
                {
                    int v = static_cast<int>(Clamp(out[i], -scale-1.0, scale));
                    if(!WriteBin4(BO_LITTLE, bps, static_cast<uint32_t>(v), fp, filename))
                        return 0;
                }
            }
        }
    }
    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
        {
            for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
            {
                const HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
                int v = static_cast<int>(std::min(std::round(hData->mIrRate * azd.mDelays[0]), MAX_HRTD));

                if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(v), fp, filename))
                    return 0;
                if(hData->mChannelType == CT_STEREO)
                {
                    v = static_cast<int>(std::min(std::round(hData->mIrRate * azd.mDelays[1]), MAX_HRTD));

                    if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(v), fp, filename))
                        return 0;
                }
            }
        }
    }
    fclose(fp);
    return 1;
}


/***********************
 *** HRTF processing ***
 ***********************/

// Calculate the onset time of an HRIR and average it with any existing
// timing for its field, elevation, azimuth, and ear.
static double AverageHrirOnset(const uint rate, const uint n, const double *hrir, const double f, const double onset)
{
    std::vector<double> upsampled(10 * n);
    {
        ResamplerT rs;
        ResamplerSetup(&rs, rate, 10 * rate);
        ResamplerRun(&rs, n, hrir, 10 * n, upsampled.data());
    }

    double mag{0.0};
    for(uint i{0u};i < 10*n;i++)
        mag = std::max(std::abs(upsampled[i]), mag);

    mag *= 0.15;
    uint i{0u};
    for(;i < 10*n;i++)
    {
        if(std::abs(upsampled[i]) >= mag)
            break;
    }
    return Lerp(onset, static_cast<double>(i) / (10*rate), f);
}

// Calculate the magnitude response of an HRIR and average it with any
// existing responses for its field, elevation, azimuth, and ear.
static void AverageHrirMagnitude(const uint points, const uint n, const double *hrir, const double f, double *mag)
{
    uint m = 1 + (n / 2), i;
    std::vector<complex_d> h(n);
    std::vector<double> r(n);

    for(i = 0;i < points;i++)
        h[i] = complex_d{hrir[i], 0.0};
    for(;i < n;i++)
        h[i] = complex_d{0.0, 0.0};
    FftForward(n, h.data());
    MagnitudeResponse(n, h.data(), r.data());
    for(i = 0;i < m;i++)
        mag[i] = Lerp(mag[i], r[i], f);
}

/* Balances the maximum HRIR magnitudes of multi-field data sets by
 * independently normalizing each field in relation to the overall maximum.
 * This is done to ignore distance attenuation.
 */
static void BalanceFieldMagnitudes(const HrirDataT *hData, const uint channels, const uint m)
{
    double maxMags[MAX_FD_COUNT];
    uint fi, ei, ai, ti, i;

    double maxMag{0.0};
    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        maxMags[fi] = 0.0;

        for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
        {
            for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
            {
                HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
                for(ti = 0;ti < channels;ti++)
                {
                    for(i = 0;i < m;i++)
                        maxMags[fi] = std::max(azd->mIrs[ti][i], maxMags[fi]);
                }
            }
        }

        maxMag = std::max(maxMags[fi], maxMag);
    }

    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        maxMags[fi] /= maxMag;

        for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
        {
            for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
            {
                HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
                for(ti = 0;ti < channels;ti++)
                {
                    for(i = 0;i < m;i++)
                        azd->mIrs[ti][i] /= maxMags[fi];
                }
            }
        }
    }
}

/* Calculate the contribution of each HRIR to the diffuse-field average based
 * on its coverage volume.  All volumes are centered at the spherical HRIR
 * coordinates and measured by extruded solid angle.
 */
static void CalculateDfWeights(const HrirDataT *hData, double *weights)
{
    double sum, innerRa, outerRa, evs, ev, upperEv, lowerEv;
    double solidAngle, solidVolume;
    uint fi, ei;

    sum = 0.0;
    // The head radius acts as the limit for the inner radius.
    innerRa = hData->mRadius;
    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        // Each volume ends half way between progressive field measurements.
        if((fi + 1) < hData->mFdCount)
            outerRa = 0.5f * (hData->mFds[fi].mDistance + hData->mFds[fi + 1].mDistance);
        // The final volume has its limit extended to some practical value.
        // This is done to emphasize the far-field responses in the average.
        else
            outerRa = 10.0f;

        evs = M_PI / 2.0 / (hData->mFds[fi].mEvCount - 1);
        for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
        {
            // For each elevation, calculate the upper and lower limits of
            // the patch band.
            ev = hData->mFds[fi].mEvs[ei].mElevation;
            lowerEv = std::max(-M_PI / 2.0, ev - evs);
            upperEv = std::min(M_PI / 2.0, ev + evs);
            // Calculate the surface area of the patch band.
            solidAngle = 2.0 * M_PI * (std::sin(upperEv) - std::sin(lowerEv));
            // Then the volume of the extruded patch band.
            solidVolume = solidAngle * (std::pow(outerRa, 3.0) - std::pow(innerRa, 3.0)) / 3.0;
            // Each weight is the volume of one extruded patch.
            weights[(fi * MAX_EV_COUNT) + ei] = solidVolume / hData->mFds[fi].mEvs[ei].mAzCount;
            // Sum the total coverage volume of the HRIRs for all fields.
            sum += solidAngle;
        }

        innerRa = outerRa;
    }

    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        // Normalize the weights given the total surface coverage for all
        // fields.
        for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
            weights[(fi * MAX_EV_COUNT) + ei] /= sum;
    }
}

/* Calculate the diffuse-field average from the given magnitude responses of
 * the HRIR set.  Weighting can be applied to compensate for the varying
 * coverage of each HRIR.  The final average can then be limited by the
 * specified magnitude range (in positive dB; 0.0 to skip).
 */
static void CalculateDiffuseFieldAverage(const HrirDataT *hData, const uint channels, const uint m, const int weighted, const double limit, double *dfa)
{
    std::vector<double> weights(hData->mFdCount * MAX_EV_COUNT);
    uint count, ti, fi, ei, i, ai;

    if(weighted)
    {
        // Use coverage weighting to calculate the average.
        CalculateDfWeights(hData, weights.data());
    }
    else
    {
        double weight;

        // If coverage weighting is not used, the weights still need to be
        // averaged by the number of existing HRIRs.
        count = hData->mIrCount;
        for(fi = 0;fi < hData->mFdCount;fi++)
        {
            for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++)
                count -= hData->mFds[fi].mEvs[ei].mAzCount;
        }
        weight = 1.0 / count;

        for(fi = 0;fi < hData->mFdCount;fi++)
        {
            for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
                weights[(fi * MAX_EV_COUNT) + ei] = weight;
        }
    }
    for(ti = 0;ti < channels;ti++)
    {
        for(i = 0;i < m;i++)
            dfa[(ti * m) + i] = 0.0;
        for(fi = 0;fi < hData->mFdCount;fi++)
        {
            for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
            {
                for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
                {
                    HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
                    // Get the weight for this HRIR's contribution.
                    double weight = weights[(fi * MAX_EV_COUNT) + ei];

                    // Add this HRIR's weighted power average to the total.
                    for(i = 0;i < m;i++)
                        dfa[(ti * m) + i] += weight * azd->mIrs[ti][i] * azd->mIrs[ti][i];
                }
            }
        }
        // Finish the average calculation and keep it from being too small.
        for(i = 0;i < m;i++)
            dfa[(ti * m) + i] = std::max(sqrt(dfa[(ti * m) + i]), EPSILON);
        // Apply a limit to the magnitude range of the diffuse-field average
        // if desired.
        if(limit > 0.0)
            LimitMagnitudeResponse(hData->mFftSize, m, limit, &dfa[ti * m], &dfa[ti * m]);
    }
}

// Perform diffuse-field equalization on the magnitude responses of the HRIR
// set using the given average response.
static void DiffuseFieldEqualize(const uint channels, const uint m, const double *dfa, const HrirDataT *hData)
{
    uint ti, fi, ei, ai, i;

    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
        {
            for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
            {
                HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];

                for(ti = 0;ti < channels;ti++)
                {
                    for(i = 0;i < m;i++)
                        azd->mIrs[ti][i] /= dfa[(ti * m) + i];
                }
            }
        }
    }
}

/* Perform minimum-phase reconstruction using the magnitude responses of the
 * HRIR set. Work is delegated to this struct, which runs asynchronously on one
 * or more threads (sharing the same reconstructor object).
 */
struct HrirReconstructor {
    std::vector<double*> mIrs;
    std::atomic<size_t> mCurrent;
    std::atomic<size_t> mDone;
    size_t mFftSize;
    size_t mIrPoints;

    void Worker()
    {
        auto h = std::vector<complex_d>(mFftSize);

        while(1)
        {
            /* Load the current index to process. */
            size_t idx{mCurrent.load()};
            do {
                /* If the index is at the end, we're done. */
                if(idx >= mIrs.size())
                    return;
                /* Otherwise, increment the current index atomically so other
                 * threads know to go to the next one. If this call fails, the
                 * current index was just changed by another thread and the new
                 * value is loaded into idx, which we'll recheck.
                 */
            } while(!mCurrent.compare_exchange_weak(idx, idx+1, std::memory_order_relaxed));

            /* Now do the reconstruction, and apply the inverse FFT to get the
             * time-domain response.
             */
            MinimumPhase(mFftSize, mIrs[idx], h.data());
            FftInverse(mFftSize, h.data());
            for(size_t i{0u};i < mIrPoints;++i)
                mIrs[idx][i] = h[i].real();

            /* Increment the number of IRs done. */
            mDone.fetch_add(1);
        }
    }
};

static void ReconstructHrirs(const HrirDataT *hData)
{
    const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};

    /* Count the number of IRs to process (excluding elevations that will be
     * synthesized later).
     */
    size_t total{hData->mIrCount};
    for(uint fi{0u};fi < hData->mFdCount;fi++)
    {
        for(uint ei{0u};ei < hData->mFds[fi].mEvStart;ei++)
            total -= hData->mFds[fi].mEvs[ei].mAzCount;
    }
    total *= channels;

    /* Set up the reconstructor with the needed size info and pointers to the
     * IRs to process.
     */
    HrirReconstructor reconstructor;
    reconstructor.mIrs.reserve(total);
    reconstructor.mCurrent.store(0, std::memory_order_relaxed);
    reconstructor.mDone.store(0, std::memory_order_relaxed);
    reconstructor.mFftSize = hData->mFftSize;
    reconstructor.mIrPoints = hData->mIrPoints;
    for(uint fi{0u};fi < hData->mFdCount;fi++)
    {
        const HrirFdT &field = hData->mFds[fi];
        for(uint ei{field.mEvStart};ei < field.mEvCount;ei++)
        {
            const HrirEvT &elev = field.mEvs[ei];
            for(uint ai{0u};ai < elev.mAzCount;ai++)
            {
                const HrirAzT &azd = elev.mAzs[ai];
                for(uint ti{0u};ti < channels;ti++)
                    reconstructor.mIrs.push_back(azd.mIrs[ti]);
            }
        }
    }

    /* Launch two threads to work on reconstruction. */
    std::thread thrd1{std::mem_fn(&HrirReconstructor::Worker), &reconstructor};
    std::thread thrd2{std::mem_fn(&HrirReconstructor::Worker), &reconstructor};

    /* Keep track of the number of IRs done, periodically reporting it. */
    size_t count;
    while((count=reconstructor.mDone.load()) != total)
    {
        size_t pcdone{count * 100 / total};

        printf("\r%3zu%% done (%zu of %zu)", pcdone, count, total);
        fflush(stdout);

        std::this_thread::sleep_for(std::chrono::milliseconds{50});
    }
    size_t pcdone{count * 100 / total};
    printf("\r%3zu%% done (%zu of %zu)\n", pcdone, count, total);

    if(thrd2.joinable()) thrd2.join();
    if(thrd1.joinable()) thrd1.join();
}

// Resamples the HRIRs for use at the given sampling rate.
static void ResampleHrirs(const uint rate, HrirDataT *hData)
{
    uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
    uint n = hData->mIrPoints;
    uint ti, fi, ei, ai;
    ResamplerT rs;

    ResamplerSetup(&rs, hData->mIrRate, rate);
    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
        {
            for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
            {
                HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
                for(ti = 0;ti < channels;ti++)
                    ResamplerRun(&rs, n, azd->mIrs[ti], n, azd->mIrs[ti]);
            }
        }
    }
    hData->mIrRate = rate;
}

/* Given field and elevation indices and an azimuth, calculate the indices of
 * the two HRIRs that bound the coordinate along with a factor for
 * calculating the continuous HRIR using interpolation.
 */
static void CalcAzIndices(const HrirFdT &field, const uint ei, const double az, uint *a0, uint *a1, double *af)
{
    double f{(2.0*M_PI + az) * field.mEvs[ei].mAzCount / (2.0*M_PI)};
    uint i{static_cast<uint>(f) % field.mEvs[ei].mAzCount};

    f -= std::floor(f);
    *a0 = i;
    *a1 = (i + 1) % field.mEvs[ei].mAzCount;
    *af = f;
}

/* Synthesize any missing onset timings at the bottom elevations of each field.
 * This just mirrors some top elevations for the bottom, and blends the
 * remaining elevations (not an accurate model).
 */
static void SynthesizeOnsets(HrirDataT *hData)
{
    const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};

    auto proc_field = [channels](HrirFdT &field) -> void
    {
        /* Get the starting elevation from the measurements, and use it as the
         * upper elevation limit for what needs to be calculated.
         */
        const uint upperElevReal{field.mEvStart};
        if(upperElevReal <= 0) return;

        /* Get the lowest half of the missing elevations' delays by mirroring
         * the top elevation delays. The responses are on a spherical grid
         * centered between the ears, so these should align.
         */
        uint ei{};
        if(channels > 1)
        {
            /* Take the polar opposite position of the desired measurement and
             * swap the ears.
             */
            field.mEvs[0].mAzs[0].mDelays[0] = field.mEvs[field.mEvCount-1].mAzs[0].mDelays[1];
            field.mEvs[0].mAzs[0].mDelays[1] = field.mEvs[field.mEvCount-1].mAzs[0].mDelays[0];
            for(ei = 1u;ei < (upperElevReal+1)/2;++ei)
            {
                const uint topElev{field.mEvCount-ei-1};

                for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++)
                {
                    uint a0, a1;
                    double af;

                    /* Rotate this current azimuth by a half-circle, and lookup
                     * the mirrored elevation to find the indices for the polar
                     * opposite position (may need blending).
                     */
                    const double az{field.mEvs[ei].mAzs[ai].mAzimuth + M_PI};
                    CalcAzIndices(field, topElev, az, &a0, &a1, &af);

                    /* Blend the delays, and again, swap the ears. */
                    field.mEvs[ei].mAzs[ai].mDelays[0] = Lerp(
                        field.mEvs[topElev].mAzs[a0].mDelays[1],
                        field.mEvs[topElev].mAzs[a1].mDelays[1], af);
                    field.mEvs[ei].mAzs[ai].mDelays[1] = Lerp(
                        field.mEvs[topElev].mAzs[a0].mDelays[0],
                        field.mEvs[topElev].mAzs[a1].mDelays[0], af);
                }
            }
        }
        else
        {
            field.mEvs[0].mAzs[0].mDelays[0] = field.mEvs[field.mEvCount-1].mAzs[0].mDelays[0];
            for(ei = 1u;ei < (upperElevReal+1)/2;++ei)
            {
                const uint topElev{field.mEvCount-ei-1};

                for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++)
                {
                    uint a0, a1;
                    double af;

                    /* For mono data sets, mirror the azimuth front<->back
                     * since the other ear is a mirror of what we have (e.g.
                     * the left ear's back-left is simulated with the right
                     * ear's front-right, which uses the left ear's front-left
                     * measurement).
                     */
                    double az{field.mEvs[ei].mAzs[ai].mAzimuth};
                    if(az <= M_PI) az = M_PI - az;
                    else az = (M_PI*2.0)-az + M_PI;
                    CalcAzIndices(field, topElev, az, &a0, &a1, &af);

                    field.mEvs[ei].mAzs[ai].mDelays[0] = Lerp(
                        field.mEvs[topElev].mAzs[a0].mDelays[0],
                        field.mEvs[topElev].mAzs[a1].mDelays[0], af);
                }
            }
        }
        /* Record the lowest elevation filled in with the mirrored top. */
        const uint lowerElevFake{ei-1u};

        /* Fill in the remaining delays using bilinear interpolation. This
         * helps smooth the transition back to the real delays.
         */
        for(;ei < upperElevReal;++ei)
        {
            const double ef{(field.mEvs[upperElevReal].mElevation - field.mEvs[ei].mElevation) /
                (field.mEvs[upperElevReal].mElevation - field.mEvs[lowerElevFake].mElevation)};

            for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++)
            {
                uint a0, a1, a2, a3;
                double af0, af1;

                double az{field.mEvs[ei].mAzs[ai].mAzimuth};
                CalcAzIndices(field, upperElevReal, az, &a0, &a1, &af0);
                CalcAzIndices(field, lowerElevFake, az, &a2, &a3, &af1);
                double blend[4]{
                    (1.0-ef) * (1.0-af0),
                    (1.0-ef) * (    af0),
                    (    ef) * (1.0-af1),
                    (    ef) * (    af1)
                };

                for(uint ti{0u};ti < channels;ti++)
                {
                    field.mEvs[ei].mAzs[ai].mDelays[ti] =
                        field.mEvs[upperElevReal].mAzs[a0].mDelays[ti]*blend[0] +
                        field.mEvs[upperElevReal].mAzs[a1].mDelays[ti]*blend[1] +
                        field.mEvs[lowerElevFake].mAzs[a2].mDelays[ti]*blend[2] +
                        field.mEvs[lowerElevFake].mAzs[a3].mDelays[ti]*blend[3];
                }
            }
        }
    };
    std::for_each(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount, proc_field);
}

/* Attempt to synthesize any missing HRIRs at the bottom elevations of each
 * field.  Right now this just blends the lowest elevation HRIRs together and
 * applies some attenuation and high frequency damping.  It is a simple, if
 * inaccurate model.
 */
static void SynthesizeHrirs(HrirDataT *hData)
{
    const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
    const uint irSize{hData->mIrPoints};
    const double beta{3.5e-6 * hData->mIrRate};

    auto proc_field = [channels,irSize,beta](HrirFdT &field) -> void
    {
        const uint oi{field.mEvStart};
        if(oi <= 0) return;

        for(uint ti{0u};ti < channels;ti++)
        {
            for(uint i{0u};i < irSize;i++)
                field.mEvs[0].mAzs[0].mIrs[ti][i] = 0.0;
            /* Blend the lowest defined elevation's responses for an average
             * -90 degree elevation response.
             */
            double blend_count{0.0};
            for(uint ai{0u};ai < field.mEvs[oi].mAzCount;ai++)
            {
                /* Only include the left responses for the left ear, and the
                 * right responses for the right ear. This removes the cross-
                 * talk that shouldn't exist for the -90 degree elevation
                 * response (and would be mistimed anyway). NOTE: Azimuth goes
                 * from 0...2pi rather than -pi...+pi (0 in front, clockwise).
                 */
                if(std::abs(field.mEvs[oi].mAzs[ai].mAzimuth) < EPSILON ||
                   (ti == LeftChannel && field.mEvs[oi].mAzs[ai].mAzimuth > M_PI-EPSILON) ||
                   (ti == RightChannel && field.mEvs[oi].mAzs[ai].mAzimuth < M_PI+EPSILON))
                {
                    for(uint i{0u};i < irSize;i++)
                        field.mEvs[0].mAzs[0].mIrs[ti][i] += field.mEvs[oi].mAzs[ai].mIrs[ti][i];
                    blend_count += 1.0;
                }
            }
            if(blend_count > 0.0)
            {
                for(uint i{0u};i < irSize;i++)
                    field.mEvs[0].mAzs[0].mIrs[ti][i] /= blend_count;
            }

            for(uint ei{1u};ei < field.mEvStart;ei++)
            {
                const double of{static_cast<double>(ei) / field.mEvStart};
                const double b{(1.0 - of) * beta};
                for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++)
                {
                    uint a0, a1;
                    double af;

                    CalcAzIndices(field, oi, field.mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af);
                    double lp[4]{};
                    for(uint i{0u};i < irSize;i++)
                    {
                        /* Blend the two defined HRIRs closest to this azimuth,
                         * then blend that with the synthesized -90 elevation.
                         */
                        const double s1{Lerp(field.mEvs[oi].mAzs[a0].mIrs[ti][i],
                            field.mEvs[oi].mAzs[a1].mIrs[ti][i], af)};
                        const double s0{Lerp(field.mEvs[0].mAzs[0].mIrs[ti][i], s1, of)};
                        /* Apply a low-pass to simulate body occlusion. */
                        lp[0] = Lerp(s0, lp[0], b);
                        lp[1] = Lerp(lp[0], lp[1], b);
                        lp[2] = Lerp(lp[1], lp[2], b);
                        lp[3] = Lerp(lp[2], lp[3], b);
                        field.mEvs[ei].mAzs[ai].mIrs[ti][i] = lp[3];
                    }
                }
            }
            const double b{beta};
            double lp[4]{};
            for(uint i{0u};i < irSize;i++)
            {
                const double s0{field.mEvs[0].mAzs[0].mIrs[ti][i]};
                lp[0] = Lerp(s0, lp[0], b);
                lp[1] = Lerp(lp[0], lp[1], b);
                lp[2] = Lerp(lp[1], lp[2], b);
                lp[3] = Lerp(lp[2], lp[3], b);
                field.mEvs[0].mAzs[0].mIrs[ti][i] = lp[3];
            }
        }
        field.mEvStart = 0;
    };
    std::for_each(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount, proc_field);
}

// The following routines assume a full set of HRIRs for all elevations.

// Normalize the HRIR set and slightly attenuate the result.
static void NormalizeHrirs(HrirDataT *hData)
{
    const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
    const uint irSize{hData->mIrPoints};

    /* Find the maximum amplitude and RMS out of all the IRs. */
    struct LevelPair { double amp, rms; };
    auto proc0_field = [channels,irSize](const LevelPair levels, const HrirFdT &field) -> LevelPair
    {
        auto proc_elev = [channels,irSize](const LevelPair levels, const HrirEvT &elev) -> LevelPair
        {
            auto proc_azi = [channels,irSize](const LevelPair levels, const HrirAzT &azi) -> LevelPair
            {
                auto proc_channel = [irSize](const LevelPair levels, const double *ir) -> LevelPair
                {
                    /* Calculate the peak amplitude and RMS of this IR. */
                    auto current = std::accumulate(ir, ir+irSize, LevelPair{0.0, 0.0},
                        [](const LevelPair current, const double impulse) -> LevelPair
                        {
                            return LevelPair{std::max(std::abs(impulse), current.amp),
                                current.rms + impulse*impulse};
                        });
                    current.rms = std::sqrt(current.rms / irSize);

                    /* Accumulate levels by taking the maximum amplitude and RMS. */
                    return LevelPair{std::max(current.amp, levels.amp),
                        std::max(current.rms, levels.rms)};
                };
                return std::accumulate(azi.mIrs, azi.mIrs+channels, levels, proc_channel);
            };
            return std::accumulate(elev.mAzs, elev.mAzs+elev.mAzCount, levels, proc_azi);
        };
        return std::accumulate(field.mEvs, field.mEvs+field.mEvCount, levels, proc_elev);
    };
    const auto maxlev = std::accumulate(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount,
        LevelPair{0.0, 0.0}, proc0_field);

    /* Normalize using the maximum RMS of the HRIRs. The RMS measure for the
     * non-filtered signal is of an impulse with equal length (to the filter):
     *
     * rms_impulse = sqrt(sum([ 1^2, 0^2, 0^2, ... ]) / n)
     *             = sqrt(1 / n)
     *
     * This helps keep a more consistent volume between the non-filtered signal
     * and various data sets.
     */
    double factor{std::sqrt(1.0 / irSize) / maxlev.rms};

    /* Also ensure the samples themselves won't clip. */
    factor = std::min(factor, 0.99/maxlev.amp);

    /* Now scale all IRs by the given factor. */
    auto proc1_field = [channels,irSize,factor](HrirFdT &field) -> void
    {
        auto proc_elev = [channels,irSize,factor](HrirEvT &elev) -> void
        {
            auto proc_azi = [channels,irSize,factor](HrirAzT &azi) -> void
            {
                auto proc_channel = [irSize,factor](double *ir) -> void
                {
                    std::transform(ir, ir+irSize, ir,
                        std::bind(std::multiplies<double>{}, _1, factor));
                };
                std::for_each(azi.mIrs, azi.mIrs+channels, proc_channel);
            };
            std::for_each(elev.mAzs, elev.mAzs+elev.mAzCount, proc_azi);
        };
        std::for_each(field.mEvs, field.mEvs+field.mEvCount, proc_elev);
    };
    std::for_each(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount, proc1_field);
}

// Calculate the left-ear time delay using a spherical head model.
static double CalcLTD(const double ev, const double az, const double rad, const double dist)
{
    double azp, dlp, l, al;

    azp = std::asin(std::cos(ev) * std::sin(az));
    dlp = std::sqrt((dist*dist) + (rad*rad) + (2.0*dist*rad*sin(azp)));
    l = std::sqrt((dist*dist) - (rad*rad));
    al = (0.5 * M_PI) + azp;
    if(dlp > l)
        dlp = l + (rad * (al - std::acos(rad / dist)));
    return dlp / 343.3;
}

// Calculate the effective head-related time delays for each minimum-phase
// HRIR. This is done per-field since distance delay is ignored.
static void CalculateHrtds(const HeadModelT model, const double radius, HrirDataT *hData)
{
    uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
    double customRatio{radius / hData->mRadius};
    uint ti, fi, ei, ai;

    if(model == HM_SPHERE)
    {
        for(fi = 0;fi < hData->mFdCount;fi++)
        {
            for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
            {
                HrirEvT *evd = &hData->mFds[fi].mEvs[ei];

                for(ai = 0;ai < evd->mAzCount;ai++)
                {
                    HrirAzT *azd = &evd->mAzs[ai];

                    for(ti = 0;ti < channels;ti++)
                        azd->mDelays[ti] = CalcLTD(evd->mElevation, azd->mAzimuth, radius, hData->mFds[fi].mDistance);
                }
            }
        }
    }
    else if(customRatio != 1.0)
    {
        for(fi = 0;fi < hData->mFdCount;fi++)
        {
            for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
            {
                HrirEvT *evd = &hData->mFds[fi].mEvs[ei];

                for(ai = 0;ai < evd->mAzCount;ai++)
                {
                    HrirAzT *azd = &evd->mAzs[ai];
                    for(ti = 0;ti < channels;ti++)
                        azd->mDelays[ti] *= customRatio;
                }
            }
        }
    }

    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        double minHrtd{std::numeric_limits<double>::infinity()};
        for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
        {
            for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
            {
                HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];

                for(ti = 0;ti < channels;ti++)
                    minHrtd = std::min(azd->mDelays[ti], minHrtd);
            }
        }

        for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
        {
            for(ti = 0;ti < channels;ti++)
            {
                for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
                    hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] -= minHrtd;
            }
        }
    }
}

// Allocate and configure dynamic HRIR structures.
static int PrepareHrirData(const uint fdCount, const double distances[MAX_FD_COUNT], const uint evCounts[MAX_FD_COUNT], const uint azCounts[MAX_FD_COUNT * MAX_EV_COUNT], HrirDataT *hData)
{
    uint evTotal = 0, azTotal = 0, fi, ei, ai;

    for(fi = 0;fi < fdCount;fi++)
    {
        evTotal += evCounts[fi];
        for(ei = 0;ei < evCounts[fi];ei++)
            azTotal += azCounts[(fi * MAX_EV_COUNT) + ei];
    }
    if(!fdCount || !evTotal || !azTotal)
        return 0;

    hData->mEvsBase.resize(evTotal);
    hData->mAzsBase.resize(azTotal);
    hData->mFds.resize(fdCount);
    hData->mIrCount = azTotal;
    hData->mFdCount = fdCount;
    evTotal = 0;
    azTotal = 0;
    for(fi = 0;fi < fdCount;fi++)
    {
        hData->mFds[fi].mDistance = distances[fi];
        hData->mFds[fi].mEvCount = evCounts[fi];
        hData->mFds[fi].mEvStart = 0;
        hData->mFds[fi].mEvs = &hData->mEvsBase[evTotal];
        evTotal += evCounts[fi];
        for(ei = 0;ei < evCounts[fi];ei++)
        {
            uint azCount = azCounts[(fi * MAX_EV_COUNT) + ei];

            hData->mFds[fi].mIrCount += azCount;
            hData->mFds[fi].mEvs[ei].mElevation = -M_PI / 2.0 + M_PI * ei / (evCounts[fi] - 1);
            hData->mFds[fi].mEvs[ei].mIrCount += azCount;
            hData->mFds[fi].mEvs[ei].mAzCount = azCount;
            hData->mFds[fi].mEvs[ei].mAzs = &hData->mAzsBase[azTotal];
            for(ai = 0;ai < azCount;ai++)
            {
                hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth = 2.0 * M_PI * ai / azCount;
                hData->mFds[fi].mEvs[ei].mAzs[ai].mIndex = azTotal + ai;
                hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[0] = 0.0;
                hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[1] = 0.0;
                hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[0] = nullptr;
                hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[1] = nullptr;
            }
            azTotal += azCount;
        }
    }
    return 1;
}

// Match the channel type from a given identifier.
static ChannelTypeT MatchChannelType(const char *ident)
{
    if(strcasecmp(ident, "mono") == 0)
        return CT_MONO;
    if(strcasecmp(ident, "stereo") == 0)
        return CT_STEREO;
    return CT_NONE;
}

// Process the data set definition to read and validate the data set metrics.
static int ProcessMetrics(TokenReaderT *tr, const uint fftSize, const uint truncSize, HrirDataT *hData)
{
    int hasRate = 0, hasType = 0, hasPoints = 0, hasRadius = 0;
    int hasDistance = 0, hasAzimuths = 0;
    char ident[MAX_IDENT_LEN+1];
    uint line, col;
    double fpVal;
    uint points;
    int intVal;
    double distances[MAX_FD_COUNT];
    uint fdCount = 0;
    uint evCounts[MAX_FD_COUNT];
    std::vector<uint> azCounts(MAX_FD_COUNT * MAX_EV_COUNT);

    TrIndication(tr, &line, &col);
    while(TrIsIdent(tr))
    {
        TrIndication(tr, &line, &col);
        if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
            return 0;
        if(strcasecmp(ident, "rate") == 0)
        {
            if(hasRate)
            {
                TrErrorAt(tr, line, col, "Redefinition of 'rate'.\n");
                return 0;
            }
            if(!TrReadOperator(tr, "="))
                return 0;
            if(!TrReadInt(tr, MIN_RATE, MAX_RATE, &intVal))
                return 0;
            hData->mIrRate = static_cast<uint>(intVal);
            hasRate = 1;
        }
        else if(strcasecmp(ident, "type") == 0)
        {
            char type[MAX_IDENT_LEN+1];

            if(hasType)
            {
                TrErrorAt(tr, line, col, "Redefinition of 'type'.\n");
                return 0;
            }
            if(!TrReadOperator(tr, "="))
                return 0;

            if(!TrReadIdent(tr, MAX_IDENT_LEN, type))
                return 0;
            hData->mChannelType = MatchChannelType(type);
            if(hData->mChannelType == CT_NONE)
            {
                TrErrorAt(tr, line, col, "Expected a channel type.\n");
                return 0;
            }
            hasType = 1;
        }
        else if(strcasecmp(ident, "points") == 0)
        {
            if(hasPoints)
            {
                TrErrorAt(tr, line, col, "Redefinition of 'points'.\n");
                return 0;
            }
            if(!TrReadOperator(tr, "="))
                return 0;
            TrIndication(tr, &line, &col);
            if(!TrReadInt(tr, MIN_POINTS, MAX_POINTS, &intVal))
                return 0;
            points = static_cast<uint>(intVal);
            if(fftSize > 0 && points > fftSize)
            {
                TrErrorAt(tr, line, col, "Value exceeds the overridden FFT size.\n");
                return 0;
            }
            if(points < truncSize)
            {
                TrErrorAt(tr, line, col, "Value is below the truncation size.\n");
                return 0;
            }
            hData->mIrPoints = points;
            if(fftSize <= 0)
            {
                hData->mFftSize = DEFAULT_FFTSIZE;
                hData->mIrSize = 1 + (DEFAULT_FFTSIZE / 2);
            }
            else
            {
                hData->mFftSize = fftSize;
                hData->mIrSize = 1 + (fftSize / 2);
                if(points > hData->mIrSize)
                    hData->mIrSize = points;
            }
            hasPoints = 1;
        }
        else if(strcasecmp(ident, "radius") == 0)
        {
            if(hasRadius)
            {
                TrErrorAt(tr, line, col, "Redefinition of 'radius'.\n");
                return 0;
            }
            if(!TrReadOperator(tr, "="))
                return 0;
            if(!TrReadFloat(tr, MIN_RADIUS, MAX_RADIUS, &fpVal))
                return 0;
            hData->mRadius = fpVal;
            hasRadius = 1;
        }
        else if(strcasecmp(ident, "distance") == 0)
        {
            uint count = 0;

            if(hasDistance)
            {
                TrErrorAt(tr, line, col, "Redefinition of 'distance'.\n");
                return 0;
            }
            if(!TrReadOperator(tr, "="))
                return 0;

            for(;;)
            {
                if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal))
                    return 0;
                if(count > 0 && fpVal <= distances[count - 1])
                {
                    TrError(tr, "Distances are not ascending.\n");
                    return 0;
                }
                distances[count++] = fpVal;
                if(!TrIsOperator(tr, ","))
                    break;
                if(count >= MAX_FD_COUNT)
                {
                    TrError(tr, "Exceeded the maximum of %d fields.\n", MAX_FD_COUNT);
                    return 0;
                }
                TrReadOperator(tr, ",");
            }
            if(fdCount != 0 && count != fdCount)
            {
                TrError(tr, "Did not match the specified number of %d fields.\n", fdCount);
                return 0;
            }
            fdCount = count;
            hasDistance = 1;
        }
        else if(strcasecmp(ident, "azimuths") == 0)
        {
            uint count = 0;

            if(hasAzimuths)
            {
                TrErrorAt(tr, line, col, "Redefinition of 'azimuths'.\n");
                return 0;
            }
            if(!TrReadOperator(tr, "="))
                return 0;

            evCounts[0] = 0;
            for(;;)
            {
                if(!TrReadInt(tr, MIN_AZ_COUNT, MAX_AZ_COUNT, &intVal))
                    return 0;
                azCounts[(count * MAX_EV_COUNT) + evCounts[count]++] = static_cast<uint>(intVal);
                if(TrIsOperator(tr, ","))
                {
                    if(evCounts[count] >= MAX_EV_COUNT)
                    {
                        TrError(tr, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT);
                        return 0;
                    }
                    TrReadOperator(tr, ",");
                }
                else
                {
                    if(evCounts[count] < MIN_EV_COUNT)
                    {
                        TrErrorAt(tr, line, col, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT);
                        return 0;
                    }
                    if(azCounts[count * MAX_EV_COUNT] != 1 || azCounts[(count * MAX_EV_COUNT) + evCounts[count] - 1] != 1)
                    {
                        TrError(tr, "Poles are not singular for field %d.\n", count - 1);
                        return 0;
                    }
                    count++;
                    if(!TrIsOperator(tr, ";"))
                        break;

                    if(count >= MAX_FD_COUNT)
                    {
                        TrError(tr, "Exceeded the maximum number of %d fields.\n", MAX_FD_COUNT);
                        return 0;
                    }
                    evCounts[count] = 0;
                    TrReadOperator(tr, ";");
                }
            }
            if(fdCount != 0 && count != fdCount)
            {
                TrError(tr, "Did not match the specified number of %d fields.\n", fdCount);
                return 0;
            }
            fdCount = count;
            hasAzimuths = 1;
        }
        else
        {
            TrErrorAt(tr, line, col, "Expected a metric name.\n");
            return 0;
        }
        TrSkipWhitespace(tr);
    }
    if(!(hasRate && hasPoints && hasRadius && hasDistance && hasAzimuths))
    {
        TrErrorAt(tr, line, col, "Expected a metric name.\n");
        return 0;
    }
    if(distances[0] < hData->mRadius)
    {
        TrError(tr, "Distance cannot start below head radius.\n");
        return 0;
    }
    if(hData->mChannelType == CT_NONE)
        hData->mChannelType = CT_MONO;
    if(!PrepareHrirData(fdCount, distances, evCounts, azCounts.data(), hData))
    {
        fprintf(stderr, "Error:  Out of memory.\n");
        exit(-1);
    }
    return 1;
}

// Parse an index triplet from the data set definition.
static int ReadIndexTriplet(TokenReaderT *tr, const HrirDataT *hData, uint *fi, uint *ei, uint *ai)
{
    int intVal;

    if(hData->mFdCount > 1)
    {
        if(!TrReadInt(tr, 0, static_cast<int>(hData->mFdCount) - 1, &intVal))
            return 0;
        *fi = static_cast<uint>(intVal);
        if(!TrReadOperator(tr, ","))
            return 0;
    }
    else
    {
        *fi = 0;
    }
    if(!TrReadInt(tr, 0, static_cast<int>(hData->mFds[*fi].mEvCount) - 1, &intVal))
        return 0;
    *ei = static_cast<uint>(intVal);
    if(!TrReadOperator(tr, ","))
        return 0;
    if(!TrReadInt(tr, 0, static_cast<int>(hData->mFds[*fi].mEvs[*ei].mAzCount) - 1, &intVal))
        return 0;
    *ai = static_cast<uint>(intVal);
    return 1;
}

// Match the source format from a given identifier.
static SourceFormatT MatchSourceFormat(const char *ident)
{
    if(strcasecmp(ident, "ascii") == 0)
        return SF_ASCII;
    if(strcasecmp(ident, "bin_le") == 0)
        return SF_BIN_LE;
    if(strcasecmp(ident, "bin_be") == 0)
        return SF_BIN_BE;
    if(strcasecmp(ident, "wave") == 0)
        return SF_WAVE;
    if(strcasecmp(ident, "sofa") == 0)
        return SF_SOFA;
    return SF_NONE;
}

// Match the source element type from a given identifier.
static ElementTypeT MatchElementType(const char *ident)
{
    if(strcasecmp(ident, "int") == 0)
        return ET_INT;
    if(strcasecmp(ident, "fp") == 0)
        return ET_FP;
    return ET_NONE;
}

// Parse and validate a source reference from the data set definition.
static int ReadSourceRef(TokenReaderT *tr, SourceRefT *src)
{
    char ident[MAX_IDENT_LEN+1];
    uint line, col;
    double fpVal;
    int intVal;

    TrIndication(tr, &line, &col);
    if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
        return 0;
    src->mFormat = MatchSourceFormat(ident);
    if(src->mFormat == SF_NONE)
    {
        TrErrorAt(tr, line, col, "Expected a source format.\n");
        return 0;
    }
    if(!TrReadOperator(tr, "("))
        return 0;
    if(src->mFormat == SF_SOFA)
    {
        if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal))
            return 0;
        src->mRadius = fpVal;
        if(!TrReadOperator(tr, ","))
            return 0;
        if(!TrReadFloat(tr, -90.0, 90.0, &fpVal))
            return 0;
        src->mElevation = fpVal;
        if(!TrReadOperator(tr, ","))
            return 0;
        if(!TrReadFloat(tr, -360.0, 360.0, &fpVal))
            return 0;
        src->mAzimuth = fpVal;
        if(!TrReadOperator(tr, ":"))
            return 0;
        if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal))
            return 0;
        src->mType = ET_NONE;
        src->mSize = 0;
        src->mBits = 0;
        src->mChannel = (uint)intVal;
        src->mSkip = 0;
    }
    else if(src->mFormat == SF_WAVE)
    {
        if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal))
            return 0;
        src->mType = ET_NONE;
        src->mSize = 0;
        src->mBits = 0;
        src->mChannel = static_cast<uint>(intVal);
        src->mSkip = 0;
    }
    else
    {
        TrIndication(tr, &line, &col);
        if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
            return 0;
        src->mType = MatchElementType(ident);
        if(src->mType == ET_NONE)
        {
            TrErrorAt(tr, line, col, "Expected a source element type.\n");
            return 0;
        }
        if(src->mFormat == SF_BIN_LE || src->mFormat == SF_BIN_BE)
        {
            if(!TrReadOperator(tr, ","))
                return 0;
            if(src->mType == ET_INT)
            {
                if(!TrReadInt(tr, MIN_BIN_SIZE, MAX_BIN_SIZE, &intVal))
                    return 0;
                src->mSize = static_cast<uint>(intVal);
                if(!TrIsOperator(tr, ","))
                    src->mBits = static_cast<int>(8*src->mSize);
                else
                {
                    TrReadOperator(tr, ",");
                    TrIndication(tr, &line, &col);
                    if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal))
                        return 0;
                    if(std::abs(intVal) < MIN_BIN_BITS || static_cast<uint>(std::abs(intVal)) > (8*src->mSize))
                    {
                        TrErrorAt(tr, line, col, "Expected a value of (+/-) %d to %d.\n", MIN_BIN_BITS, 8*src->mSize);
                        return 0;
                    }
                    src->mBits = intVal;
                }
            }
            else
            {
                TrIndication(tr, &line, &col);
                if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal))
                    return 0;
                if(intVal != 4 && intVal != 8)
                {
                    TrErrorAt(tr, line, col, "Expected a value of 4 or 8.\n");
                    return 0;
                }
                src->mSize = static_cast<uint>(intVal);
                src->mBits = 0;
            }
        }
        else if(src->mFormat == SF_ASCII && src->mType == ET_INT)
        {
            if(!TrReadOperator(tr, ","))
                return 0;
            if(!TrReadInt(tr, MIN_ASCII_BITS, MAX_ASCII_BITS, &intVal))
                return 0;
            src->mSize = 0;
            src->mBits = intVal;
        }
        else
        {
            src->mSize = 0;
            src->mBits = 0;
        }

        if(!TrIsOperator(tr, ";"))
            src->mSkip = 0;
        else
        {
            TrReadOperator(tr, ";");
            if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
                return 0;
            src->mSkip = static_cast<uint>(intVal);
        }
    }
    if(!TrReadOperator(tr, ")"))
        return 0;
    if(TrIsOperator(tr, "@"))
    {
        TrReadOperator(tr, "@");
        if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
            return 0;
        src->mOffset = static_cast<uint>(intVal);
    }
    else
        src->mOffset = 0;
    if(!TrReadOperator(tr, ":"))
        return 0;
    if(!TrReadString(tr, MAX_PATH_LEN, src->mPath))
        return 0;
    return 1;
}

// Parse and validate a SOFA source reference from the data set definition.
static int ReadSofaRef(TokenReaderT *tr, SourceRefT *src)
{
    char ident[MAX_IDENT_LEN+1];
    uint line, col;
    int intVal;

    TrIndication(tr, &line, &col);
    if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
        return 0;
    src->mFormat = MatchSourceFormat(ident);
    if(src->mFormat != SF_SOFA)
    {
        TrErrorAt(tr, line, col, "Expected the SOFA source format.\n");
        return 0;
    }

    src->mType = ET_NONE;
    src->mSize = 0;
    src->mBits = 0;
    src->mChannel = 0;
    src->mSkip = 0;

    if(TrIsOperator(tr, "@"))
    {
        TrReadOperator(tr, "@");
        if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
            return 0;
        src->mOffset = (uint)intVal;
    }
    else
        src->mOffset = 0;
    if(!TrReadOperator(tr, ":"))
        return 0;
    if(!TrReadString(tr, MAX_PATH_LEN, src->mPath))
        return 0;
    return 1;
}

// Match the target ear (index) from a given identifier.
static int MatchTargetEar(const char *ident)
{
    if(strcasecmp(ident, "left") == 0)
        return 0;
    if(strcasecmp(ident, "right") == 0)
        return 1;
    return -1;
}

// Process the list of sources in the data set definition.
static int ProcessSources(const HeadModelT model, TokenReaderT *tr, HrirDataT *hData)
{
    uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
    hData->mHrirsBase.resize(channels * hData->mIrCount * hData->mIrSize);
    double *hrirs = hData->mHrirsBase.data();
    std::vector<double> hrir(hData->mIrPoints);
    uint line, col, fi, ei, ai, ti;
    int count;

    printf("Loading sources...");
    fflush(stdout);
    count = 0;
    while(TrIsOperator(tr, "["))
    {
        double factor[2]{ 1.0, 1.0 };

        TrIndication(tr, &line, &col);
        TrReadOperator(tr, "[");

        if(TrIsOperator(tr, "*"))
        {
            SourceRefT src;
            struct MYSOFA_EASY *sofa;
            uint si;

            TrReadOperator(tr, "*");
            if(!TrReadOperator(tr, "]") || !TrReadOperator(tr, "="))
                return 0;

            TrIndication(tr, &line, &col);
            if(!ReadSofaRef(tr, &src))
                return 0;

            if(hData->mChannelType == CT_STEREO)
            {
                char type[MAX_IDENT_LEN+1];
                ChannelTypeT channelType;

                if(!TrReadIdent(tr, MAX_IDENT_LEN, type))
                    return 0;

                channelType = MatchChannelType(type);

                switch(channelType)
                {
                    case CT_NONE:
                        TrErrorAt(tr, line, col, "Expected a channel type.\n");
                        return 0;
                    case CT_MONO:
                        src.mChannel = 0;
                        break;
                    case CT_STEREO:
                        src.mChannel = 1;
                        break;
                }
            }
            else
            {
                char type[MAX_IDENT_LEN+1];
                ChannelTypeT channelType;

                if(!TrReadIdent(tr, MAX_IDENT_LEN, type))
                    return 0;

                channelType = MatchChannelType(type);
                if(channelType != CT_MONO)
                {
                    TrErrorAt(tr, line, col, "Expected a mono channel type.\n");
                    return 0;
                }
                src.mChannel = 0;
            }

            sofa = LoadSofaFile(&src, hData->mIrRate, hData->mIrPoints);
            if(!sofa) return 0;

            for(si = 0;si < sofa->hrtf->M;si++)
            {
                printf("\rLoading sources... %d of %d", si+1, sofa->hrtf->M);
                fflush(stdout);

                float aer[3] = {
                    sofa->hrtf->SourcePosition.values[3*si],
                    sofa->hrtf->SourcePosition.values[3*si + 1],
                    sofa->hrtf->SourcePosition.values[3*si + 2]
                };
                mysofa_c2s(aer);

                if(std::fabs(aer[1]) >= 89.999f)
                    aer[0] = 0.0f;
                else
                    aer[0] = std::fmod(360.0f - aer[0], 360.0f);

                for(fi = 0;fi < hData->mFdCount;fi++)
                {
                    double delta = aer[2] - hData->mFds[fi].mDistance;
                    if(std::abs(delta) < 0.001)
                        break;
                }
                if(fi >= hData->mFdCount)
                    continue;

                double ef{(90.0 + aer[1]) * (hData->mFds[fi].mEvCount - 1) / 180.0};
                ei = (int)std::round(ef);
                ef = (ef - ei) * 180.0f / (hData->mFds[fi].mEvCount - 1);
                if(std::abs(ef) >= 0.1)
                    continue;

                double af{aer[0] * hData->mFds[fi].mEvs[ei].mAzCount / 360.0f};
                ai = (int)std::round(af);
                af = (af - ai) * 360.0f / hData->mFds[fi].mEvs[ei].mAzCount;
                ai = ai % hData->mFds[fi].mEvs[ei].mAzCount;
                if(std::abs(af) >= 0.1)
                    continue;

                HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];

                if(azd->mIrs[0] != nullptr)
                {
                    TrErrorAt(tr, line, col, "Redefinition of source [ %d, %d, %d ].\n", fi, ei, ai);
                    return 0;
                }

                ExtractSofaHrir(sofa, si, 0, src.mOffset, hData->mIrPoints, hrir.data());
                azd->mIrs[0] = &hrirs[hData->mIrSize * azd->mIndex];
                if(model == HM_DATASET)
                    azd->mDelays[0] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data(), 1.0, azd->mDelays[0]);
                AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), 1.0, azd->mIrs[0]);

                if(src.mChannel == 1)
                {
                    ExtractSofaHrir(sofa, si, 1, src.mOffset, hData->mIrPoints, hrir.data());
                    azd->mIrs[1] = &hrirs[hData->mIrSize * (hData->mIrCount + azd->mIndex)];
                    if(model == HM_DATASET)
                        azd->mDelays[1] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data(), 1.0, azd->mDelays[1]);
                    AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), 1.0, azd->mIrs[1]);
                }

                // TODO: Since some SOFA files contain minimum phase HRIRs,
                // it would be beneficial to check for per-measurement delays
                // (when available) to reconstruct the HRTDs.
            }

            continue;
        }

        if(!ReadIndexTriplet(tr, hData, &fi, &ei, &ai))
            return 0;
        if(!TrReadOperator(tr, "]"))
            return 0;
        HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];

        if(azd->mIrs[0] != nullptr)
        {
            TrErrorAt(tr, line, col, "Redefinition of source.\n");
            return 0;
        }
        if(!TrReadOperator(tr, "="))
            return 0;

        for(;;)
        {
            SourceRefT src;
            uint ti = 0;

            if(!ReadSourceRef(tr, &src))
                return 0;

            // TODO: Would be nice to display 'x of y files', but that would
            // require preparing the source refs first to get a total count
            // before loading them.
            ++count;
            printf("\rLoading sources... %d file%s", count, (count==1)?"":"s");
            fflush(stdout);

            if(!LoadSource(&src, hData->mIrRate, hData->mIrPoints, hrir.data()))
                return 0;

            if(hData->mChannelType == CT_STEREO)
            {
                char ident[MAX_IDENT_LEN+1];

                if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
                    return 0;
                ti = MatchTargetEar(ident);
                if(static_cast<int>(ti) < 0)
                {
                    TrErrorAt(tr, line, col, "Expected a target ear.\n");
                    return 0;
                }
            }
            azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)];
            if(model == HM_DATASET)
                azd->mDelays[ti] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data(), 1.0 / factor[ti], azd->mDelays[ti]);
            AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), 1.0 / factor[ti], azd->mIrs[ti]);
            factor[ti] += 1.0;
            if(!TrIsOperator(tr, "+"))
                break;
            TrReadOperator(tr, "+");
        }
        if(hData->mChannelType == CT_STEREO)
        {
            if(azd->mIrs[0] == nullptr)
            {
                TrErrorAt(tr, line, col, "Missing left ear source reference(s).\n");
                return 0;
            }
            else if(azd->mIrs[1] == nullptr)
            {
                TrErrorAt(tr, line, col, "Missing right ear source reference(s).\n");
                return 0;
            }
        }
    }
    printf("\n");
    for(fi = 0;fi < hData->mFdCount;fi++)
    {
        for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
        {
            for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
            {
                HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
                if(azd->mIrs[0] != nullptr)
                    break;
            }
            if(ai < hData->mFds[fi].mEvs[ei].mAzCount)
                break;
        }
        if(ei >= hData->mFds[fi].mEvCount)
        {
            TrError(tr, "Missing source references [ %d, *, * ].\n", fi);
            return 0;
        }
        hData->mFds[fi].mEvStart = ei;
        for(;ei < hData->mFds[fi].mEvCount;ei++)
        {
            for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
            {
                HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];

                if(azd->mIrs[0] == nullptr)
                {
                    TrError(tr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
                    return 0;
                }
            }
        }
    }
    for(ti = 0;ti < channels;ti++)
    {
        for(fi = 0;fi < hData->mFdCount;fi++)
        {
            for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
            {
                for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
                {
                    HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];

                    azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)];
                }
            }
        }
    }
    if(!TrLoad(tr))
    {
        mysofa_cache_release_all();
        return 1;
    }

    TrError(tr, "Errant data at end of source list.\n");
    mysofa_cache_release_all();
    return 0;
}

/* Parse the data set definition and process the source data, storing the
 * resulting data set as desired.  If the input name is NULL it will read
 * from standard input.
 */
static int ProcessDefinition(const char *inName, const uint outRate, const uint fftSize, const int equalize, const int surface, const double limit, const uint truncSize, const HeadModelT model, const double radius, const char *outName)
{
    char rateStr[8+1], expName[MAX_PATH_LEN];
    TokenReaderT tr;
    HrirDataT hData;
    FILE *fp;
    int ret;

    fprintf(stdout, "Reading HRIR definition from %s...\n", inName?inName:"stdin");
    if(inName != nullptr)
    {
        fp = fopen(inName, "r");
        if(fp == nullptr)
        {
            fprintf(stderr, "\nError: Could not open definition file '%s'\n", inName);
            return 0;
        }
        TrSetup(fp, inName, &tr);
    }
    else
    {
        fp = stdin;
        TrSetup(fp, "<stdin>", &tr);
    }
    if(!ProcessMetrics(&tr, fftSize, truncSize, &hData))
    {
        if(inName != nullptr)
            fclose(fp);
        return 0;
    }
    if(!ProcessSources(model, &tr, &hData))
    {
        if(inName)
            fclose(fp);
        return 0;
    }
    if(fp != stdin)
        fclose(fp);
    if(equalize)
    {
        uint c = (hData.mChannelType == CT_STEREO) ? 2 : 1;
        uint m = 1 + hData.mFftSize / 2;
        std::vector<double> dfa(c * m);

        if(hData.mFdCount > 1)
        {
            fprintf(stdout, "Balancing field magnitudes...\n");
            BalanceFieldMagnitudes(&hData, c, m);
        }
        fprintf(stdout, "Calculating diffuse-field average...\n");
        CalculateDiffuseFieldAverage(&hData, c, m, surface, limit, dfa.data());
        fprintf(stdout, "Performing diffuse-field equalization...\n");
        DiffuseFieldEqualize(c, m, dfa.data(), &hData);
    }
    fprintf(stdout, "Performing minimum phase reconstruction...\n");
    ReconstructHrirs(&hData);
    if(outRate != 0 && outRate != hData.mIrRate)
    {
        fprintf(stdout, "Resampling HRIRs...\n");
        ResampleHrirs(outRate, &hData);
    }
    fprintf(stdout, "Truncating minimum-phase HRIRs...\n");
    hData.mIrPoints = truncSize;
    fprintf(stdout, "Synthesizing missing elevations...\n");
    if(model == HM_DATASET)
        SynthesizeOnsets(&hData);
    SynthesizeHrirs(&hData);
    fprintf(stdout, "Normalizing final HRIRs...\n");
    NormalizeHrirs(&hData);
    fprintf(stdout, "Calculating impulse delays...\n");
    CalculateHrtds(model, (radius > DEFAULT_CUSTOM_RADIUS) ? radius : hData.mRadius, &hData);
    snprintf(rateStr, 8, "%u", hData.mIrRate);
    StrSubst(outName, "%r", rateStr, MAX_PATH_LEN, expName);
    fprintf(stdout, "Creating MHR data set %s...\n", expName);
    ret = StoreMhr(&hData, expName);

    return ret;
}

static void PrintHelp(const char *argv0, FILE *ofile)
{
    fprintf(ofile, "Usage:  %s [<option>...]\n\n", argv0);
    fprintf(ofile, "Options:\n");
    fprintf(ofile, " -r <rate>       Change the data set sample rate to the specified value and\n");
    fprintf(ofile, "                 resample the HRIRs accordingly.\n");
    fprintf(ofile, " -f <points>     Override the FFT window size (default: %u).\n", DEFAULT_FFTSIZE);
    fprintf(ofile, " -e {on|off}     Toggle diffuse-field equalization (default: %s).\n", (DEFAULT_EQUALIZE ? "on" : "off"));
    fprintf(ofile, " -s {on|off}     Toggle surface-weighted diffuse-field average (default: %s).\n", (DEFAULT_SURFACE ? "on" : "off"));
    fprintf(ofile, " -l {<dB>|none}  Specify a limit to the magnitude range of the diffuse-field\n");
    fprintf(ofile, "                 average (default: %.2f).\n", DEFAULT_LIMIT);
    fprintf(ofile, " -w <points>     Specify the size of the truncation window that's applied\n");
    fprintf(ofile, "                 after minimum-phase reconstruction (default: %u).\n", DEFAULT_TRUNCSIZE);
    fprintf(ofile, " -d {dataset|    Specify the model used for calculating the head-delay timing\n");
    fprintf(ofile, "     sphere}     values (default: %s).\n", ((DEFAULT_HEAD_MODEL == HM_DATASET) ? "dataset" : "sphere"));
    fprintf(ofile, " -c <radius>     Use a customized head radius measured to-ear in meters.\n");
    fprintf(ofile, " -i <filename>   Specify an HRIR definition file to use (defaults to stdin).\n");
    fprintf(ofile, " -o <filename>   Specify an output file. Use of '%%r' will be substituted with\n");
    fprintf(ofile, "                 the data set sample rate.\n");
}

// Standard command line dispatch.
int main(int argc, char *argv[])
{
    const char *inName = nullptr, *outName = nullptr;
    uint outRate, fftSize;
    int equalize, surface;
    char *end = nullptr;
    HeadModelT model;
    uint truncSize;
    double radius;
    double limit;
    int opt;

    GET_UNICODE_ARGS(&argc, &argv);

    if(argc < 2)
    {
        fprintf(stdout, "HRTF Processing and Composition Utility\n\n");
        PrintHelp(argv[0], stdout);
        exit(EXIT_SUCCESS);
    }

    outName = "./oalsoft_hrtf_%r.mhr";
    outRate = 0;
    fftSize = 0;
    equalize = DEFAULT_EQUALIZE;
    surface = DEFAULT_SURFACE;
    limit = DEFAULT_LIMIT;
    truncSize = DEFAULT_TRUNCSIZE;
    model = DEFAULT_HEAD_MODEL;
    radius = DEFAULT_CUSTOM_RADIUS;

    while((opt=getopt(argc, argv, "r:f:e:s:l:w:d:c:e:i:o:h")) != -1)
    {
        switch(opt)
        {
        case 'r':
            outRate = strtoul(optarg, &end, 10);
            if(end[0] != '\0' || outRate < MIN_RATE || outRate > MAX_RATE)
            {
                fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected between %u to %u.\n", optarg, opt, MIN_RATE, MAX_RATE);
                exit(EXIT_FAILURE);
            }
            break;

        case 'f':
            fftSize = strtoul(optarg, &end, 10);
            if(end[0] != '\0' || (fftSize&(fftSize-1)) || fftSize < MIN_FFTSIZE || fftSize > MAX_FFTSIZE)
            {
                fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected a power-of-two between %u to %u.\n", optarg, opt, MIN_FFTSIZE, MAX_FFTSIZE);
                exit(EXIT_FAILURE);
            }
            break;

        case 'e':
            if(strcmp(optarg, "on") == 0)
                equalize = 1;
            else if(strcmp(optarg, "off") == 0)
                equalize = 0;
            else
            {
                fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt);
                exit(EXIT_FAILURE);
            }
            break;

        case 's':
            if(strcmp(optarg, "on") == 0)
                surface = 1;
            else if(strcmp(optarg, "off") == 0)
                surface = 0;
            else
            {
                fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt);
                exit(EXIT_FAILURE);
            }
            break;

        case 'l':
            if(strcmp(optarg, "none") == 0)
                limit = 0.0;
            else
            {
                limit = strtod(optarg, &end);
                if(end[0] != '\0' || limit < MIN_LIMIT || limit > MAX_LIMIT)
                {
                    fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected between %.0f to %.0f.\n", optarg, opt, MIN_LIMIT, MAX_LIMIT);
                    exit(EXIT_FAILURE);
                }
            }
            break;

        case 'w':
            truncSize = strtoul(optarg, &end, 10);
            if(end[0] != '\0' || truncSize < MIN_TRUNCSIZE || truncSize > MAX_TRUNCSIZE || (truncSize%MOD_TRUNCSIZE))
            {
                fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected multiple of %u between %u to %u.\n", optarg, opt, MOD_TRUNCSIZE, MIN_TRUNCSIZE, MAX_TRUNCSIZE);
                exit(EXIT_FAILURE);
            }
            break;

        case 'd':
            if(strcmp(optarg, "dataset") == 0)
                model = HM_DATASET;
            else if(strcmp(optarg, "sphere") == 0)
                model = HM_SPHERE;
            else
            {
                fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected dataset or sphere.\n", optarg, opt);
                exit(EXIT_FAILURE);
            }
            break;

        case 'c':
            radius = strtod(optarg, &end);
            if(end[0] != '\0' || radius < MIN_CUSTOM_RADIUS || radius > MAX_CUSTOM_RADIUS)
            {
                fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected between %.2f to %.2f.\n", optarg, opt, MIN_CUSTOM_RADIUS, MAX_CUSTOM_RADIUS);
                exit(EXIT_FAILURE);
            }
            break;

        case 'i':
            inName = optarg;
            break;

        case 'o':
            outName = optarg;
            break;

        case 'h':
            PrintHelp(argv[0], stdout);
            exit(EXIT_SUCCESS);

        default: /* '?' */
            PrintHelp(argv[0], stderr);
            exit(EXIT_FAILURE);
        }
    }

    if(!ProcessDefinition(inName, outRate, fftSize, equalize, surface, limit,
                          truncSize, model, radius, outName))
        return -1;
    fprintf(stdout, "Operation completed.\n");

    return EXIT_SUCCESS;
}