1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
|
/*
* HRTF utility for producing and demonstrating the process of creating an
* OpenAL Soft compatible HRIR data set.
*
* Copyright (C) 2018-2019 Christopher Fitzgerald
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
*/
#include "loadsofa.h"
#include <algorithm>
#include <atomic>
#include <chrono>
#include <cmath>
#include <cstdio>
#include <future>
#include <iterator>
#include <memory>
#include <numeric>
#include <string>
#include <vector>
#include "makemhr.h"
#include "polyphase_resampler.h"
#include "sofa-support.h"
#include "mysofa.h"
using uint = unsigned int;
/* Attempts to produce a compatible layout. Most data sets tend to be
* uniform and have the same major axis as used by OpenAL Soft's HRTF model.
* This will remove outliers and produce a maximally dense layout when
* possible. Those sets that contain purely random measurements or use
* different major axes will fail.
*/
static bool PrepareLayout(const uint m, const float *xyzs, HrirDataT *hData)
{
fprintf(stdout, "Detecting compatible layout...\n");
auto fds = GetCompatibleLayout(m, xyzs);
if(fds.size() > MAX_FD_COUNT)
{
fprintf(stdout, "Incompatible layout (inumerable radii).\n");
return false;
}
double distances[MAX_FD_COUNT]{};
uint evCounts[MAX_FD_COUNT]{};
auto azCounts = std::vector<uint>(MAX_FD_COUNT*MAX_EV_COUNT, 0u);
uint fi{0u}, ir_total{0u};
for(const auto &field : fds)
{
distances[fi] = field.mDistance;
evCounts[fi] = field.mEvCount;
for(uint ei{0u};ei < field.mEvStart;ei++)
azCounts[fi*MAX_EV_COUNT + ei] = field.mAzCounts[field.mEvCount-ei-1];
for(uint ei{field.mEvStart};ei < field.mEvCount;ei++)
{
azCounts[fi*MAX_EV_COUNT + ei] = field.mAzCounts[ei];
ir_total += field.mAzCounts[ei];
}
++fi;
}
fprintf(stdout, "Using %u of %u IRs.\n", ir_total, m);
return PrepareHrirData(fi, distances, evCounts, azCounts.data(), hData) != 0;
}
bool PrepareSampleRate(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
{
const char *srate_dim{nullptr};
const char *srate_units{nullptr};
MYSOFA_ARRAY *srate_array{&sofaHrtf->DataSamplingRate};
MYSOFA_ATTRIBUTE *srate_attrs{srate_array->attributes};
while(srate_attrs)
{
if(std::string{"DIMENSION_LIST"} == srate_attrs->name)
{
if(srate_dim)
{
fprintf(stderr, "Duplicate SampleRate.DIMENSION_LIST\n");
return false;
}
srate_dim = srate_attrs->value;
}
else if(std::string{"Units"} == srate_attrs->name)
{
if(srate_units)
{
fprintf(stderr, "Duplicate SampleRate.Units\n");
return false;
}
srate_units = srate_attrs->value;
}
else
fprintf(stderr, "Unexpected sample rate attribute: %s = %s\n", srate_attrs->name,
srate_attrs->value);
srate_attrs = srate_attrs->next;
}
if(!srate_dim)
{
fprintf(stderr, "Missing sample rate dimensions\n");
return false;
}
if(srate_dim != std::string{"I"})
{
fprintf(stderr, "Unsupported sample rate dimensions: %s\n", srate_dim);
return false;
}
if(!srate_units)
{
fprintf(stderr, "Missing sample rate unit type\n");
return false;
}
if(srate_units != std::string{"hertz"})
{
fprintf(stderr, "Unsupported sample rate unit type: %s\n", srate_units);
return false;
}
/* I dimensions guarantees 1 element, so just extract it. */
hData->mIrRate = static_cast<uint>(srate_array->values[0] + 0.5f);
if(hData->mIrRate < MIN_RATE || hData->mIrRate > MAX_RATE)
{
fprintf(stderr, "Sample rate out of range: %u (expected %u to %u)", hData->mIrRate,
MIN_RATE, MAX_RATE);
return false;
}
return true;
}
bool PrepareDelay(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
{
const char *delay_dim{nullptr};
MYSOFA_ARRAY *delay_array{&sofaHrtf->DataDelay};
MYSOFA_ATTRIBUTE *delay_attrs{delay_array->attributes};
while(delay_attrs)
{
if(std::string{"DIMENSION_LIST"} == delay_attrs->name)
{
if(delay_dim)
{
fprintf(stderr, "Duplicate Delay.DIMENSION_LIST\n");
return false;
}
delay_dim = delay_attrs->value;
}
else
fprintf(stderr, "Unexpected delay attribute: %s = %s\n", delay_attrs->name,
delay_attrs->value);
delay_attrs = delay_attrs->next;
}
if(!delay_dim)
{
fprintf(stderr, "Missing delay dimensions\n");
/*return false;*/
}
else if(delay_dim != std::string{"I,R"})
{
fprintf(stderr, "Unsupported delay dimensions: %s\n", delay_dim);
return false;
}
else if(hData->mChannelType == CT_STEREO)
{
/* I,R is 1xChannelCount. Makemhr currently removes any delay constant,
* so we can ignore this as long as it's equal.
*/
if(delay_array->values[0] != delay_array->values[1])
{
fprintf(stderr, "Mismatched delays not supported: %f, %f\n", delay_array->values[0],
delay_array->values[1]);
return false;
}
}
return true;
}
bool CheckIrData(MYSOFA_HRTF *sofaHrtf)
{
const char *ir_dim{nullptr};
MYSOFA_ARRAY *ir_array{&sofaHrtf->DataIR};
MYSOFA_ATTRIBUTE *ir_attrs{ir_array->attributes};
while(ir_attrs)
{
if(std::string{"DIMENSION_LIST"} == ir_attrs->name)
{
if(ir_dim)
{
fprintf(stderr, "Duplicate IR.DIMENSION_LIST\n");
return false;
}
ir_dim = ir_attrs->value;
}
else
fprintf(stderr, "Unexpected IR attribute: %s = %s\n", ir_attrs->name,
ir_attrs->value);
ir_attrs = ir_attrs->next;
}
if(!ir_dim)
{
fprintf(stderr, "Missing IR dimensions\n");
return false;
}
if(ir_dim != std::string{"M,R,N"})
{
fprintf(stderr, "Unsupported IR dimensions: %s\n", ir_dim);
return false;
}
return true;
}
/* Calculate the onset time of a HRIR. */
static double CalcHrirOnset(const uint rate, const uint n, std::vector<double> &upsampled,
const double *hrir)
{
{
PPhaseResampler rs;
rs.init(rate, 10 * rate);
rs.process(n, hrir, 10 * n, upsampled.data());
}
double mag{std::accumulate(upsampled.cbegin(), upsampled.cend(), double{0.0},
[](const double magnitude, const double sample) -> double
{ return std::max(magnitude, std::abs(sample)); })};
mag *= 0.15;
auto iter = std::find_if(upsampled.cbegin(), upsampled.cend(),
[mag](const double sample) -> bool { return (std::abs(sample) >= mag); });
return static_cast<double>(std::distance(upsampled.cbegin(), iter)) / (10.0*rate);
}
/* Calculate the magnitude response of a HRIR. */
static void CalcHrirMagnitude(const uint points, const uint n, std::vector<complex_d> &h,
const double *hrir, double *mag)
{
auto iter = std::copy_n(hrir, points, h.begin());
std::fill(iter, h.end(), complex_d{0.0, 0.0});
FftForward(n, h.data());
MagnitudeResponse(n, h.data(), mag);
}
static bool LoadResponses(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
{
std::atomic<uint> loaded_count{0u};
auto load_proc = [sofaHrtf,hData,&loaded_count]() -> bool
{
const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
hData->mHrirsBase.resize(channels * hData->mIrCount * hData->mIrSize);
double *hrirs = hData->mHrirsBase.data();
/* Temporary buffers used to calculate the IR's onset and frequency
* magnitudes.
*/
auto upsampled = std::vector<double>(10 * hData->mIrPoints);
auto htemp = std::vector<complex_d>(hData->mFftSize);
auto hrir = std::vector<double>(hData->mFftSize);
for(uint si{0u};si < sofaHrtf->M;++si)
{
loaded_count.fetch_add(1u);
float aer[3]{
sofaHrtf->SourcePosition.values[3*si],
sofaHrtf->SourcePosition.values[3*si + 1],
sofaHrtf->SourcePosition.values[3*si + 2]
};
mysofa_c2s(aer);
if(std::abs(aer[1]) >= 89.999f)
aer[0] = 0.0f;
else
aer[0] = std::fmod(360.0f - aer[0], 360.0f);
auto field = std::find_if(hData->mFds.cbegin(), hData->mFds.cend(),
[&aer](const HrirFdT &fld) -> bool
{
double delta = aer[2] - fld.mDistance;
return (std::abs(delta) < 0.001);
});
if(field == hData->mFds.cend())
continue;
double ef{(90.0+aer[1]) / 180.0 * (field->mEvCount-1)};
auto ei = static_cast<int>(std::round(ef));
ef = (ef-ei) * 180.0 / (field->mEvCount-1);
if(std::abs(ef) >= 0.1) continue;
double af{aer[0] / 360.0 * field->mEvs[ei].mAzCount};
auto ai = static_cast<int>(std::round(af));
af = (af-ai) * 360.0 / field->mEvs[ei].mAzCount;
ai %= field->mEvs[ei].mAzCount;
if(std::abs(af) >= 0.1) continue;
HrirAzT *azd = &field->mEvs[ei].mAzs[ai];
if(azd->mIrs[0] != nullptr)
{
fprintf(stderr, "\nMultiple measurements near [ a=%f, e=%f, r=%f ].\n",
aer[0], aer[1], aer[2]);
return false;
}
for(uint ti{0u};ti < channels;++ti)
{
std::copy_n(&sofaHrtf->DataIR.values[(si*sofaHrtf->R + ti)*sofaHrtf->N],
hData->mIrPoints, hrir.begin());
azd->mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd->mIndex)];
azd->mDelays[ti] = CalcHrirOnset(hData->mIrRate, hData->mIrPoints, upsampled,
hrir.data());
CalcHrirMagnitude(hData->mIrPoints, hData->mFftSize, htemp, hrir.data(),
azd->mIrs[ti]);
}
/* TODO: Since some SOFA files contain minimum phase HRIRs,
* it would be beneficial to check for per-measurement delays
* (when available) to reconstruct the HRTDs.
*/
}
return true;
};
std::future_status load_status{};
auto load_future = std::async(std::launch::async, load_proc);
do {
load_status = load_future.wait_for(std::chrono::milliseconds{50});
printf("\rLoading HRIRs... %u of %u", loaded_count.load(), sofaHrtf->M);
fflush(stdout);
} while(load_status != std::future_status::ready);
fputc('\n', stdout);
return load_future.get();
}
bool LoadSofaFile(const char *filename, const uint fftSize, const uint truncSize,
const ChannelModeT chanMode, HrirDataT *hData)
{
int err;
MySofaHrtfPtr sofaHrtf{mysofa_load(filename, &err)};
if(!sofaHrtf)
{
fprintf(stdout, "Error: Could not load %s: %s\n", filename, SofaErrorStr(err));
return false;
}
/* NOTE: Some valid SOFA files are failing this check. */
err = mysofa_check(sofaHrtf.get());
if(err != MYSOFA_OK)
fprintf(stderr, "Warning: Supposedly malformed source file '%s' (%s).\n", filename,
SofaErrorStr(err));
mysofa_tocartesian(sofaHrtf.get());
/* Make sure emitter and receiver counts are sane. */
if(sofaHrtf->E != 1)
{
fprintf(stderr, "%u emitters not supported\n", sofaHrtf->E);
return false;
}
if(sofaHrtf->R > 2 || sofaHrtf->R < 1)
{
fprintf(stderr, "%u receivers not supported\n", sofaHrtf->R);
return false;
}
/* Assume R=2 is a stereo measurement, and R=1 is mono left-ear-only. */
if(sofaHrtf->R == 2 && chanMode == CM_AllowStereo)
hData->mChannelType = CT_STEREO;
else
hData->mChannelType = CT_MONO;
/* Check and set the FFT and IR size. */
if(sofaHrtf->N > fftSize)
{
fprintf(stderr, "Sample points exceeds the FFT size.\n");
return false;
}
if(sofaHrtf->N < truncSize)
{
fprintf(stderr, "Sample points is below the truncation size.\n");
return false;
}
hData->mIrPoints = sofaHrtf->N;
hData->mFftSize = fftSize;
hData->mIrSize = std::max(1u + (fftSize/2u), sofaHrtf->N);
/* Assume a default head radius of 9cm. */
hData->mRadius = 0.09;
if(!PrepareSampleRate(sofaHrtf.get(), hData) || !PrepareDelay(sofaHrtf.get(), hData)
|| !CheckIrData(sofaHrtf.get()))
return false;
if(!PrepareLayout(sofaHrtf->M, sofaHrtf->SourcePosition.values, hData))
return false;
if(!LoadResponses(sofaHrtf.get(), hData))
return false;
sofaHrtf = nullptr;
for(uint fi{0u};fi < hData->mFdCount;fi++)
{
uint ei{0u};
for(;ei < hData->mFds[fi].mEvCount;ei++)
{
uint ai{0u};
for(;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
if(azd.mIrs[0] != nullptr) break;
}
if(ai < hData->mFds[fi].mEvs[ei].mAzCount)
break;
}
if(ei >= hData->mFds[fi].mEvCount)
{
fprintf(stderr, "Missing source references [ %d, *, * ].\n", fi);
return false;
}
hData->mFds[fi].mEvStart = ei;
for(;ei < hData->mFds[fi].mEvCount;ei++)
{
for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
if(azd.mIrs[0] == nullptr)
{
fprintf(stderr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
return false;
}
}
}
}
const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
double *hrirs = hData->mHrirsBase.data();
for(uint fi{0u};fi < hData->mFdCount;fi++)
{
for(uint ei{0u};ei < hData->mFds[fi].mEvCount;ei++)
{
for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
for(uint ti{0u};ti < channels;ti++)
azd.mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd.mIndex)];
}
}
}
return true;
}
|