/*
* $RCSfile$
*
* Copyright (c) 2006 Sun Microsystems, Inc. All rights reserved.
*
* Use is subject to license terms.
*
* $Revision$
* $Date$
* $State$
*/
package javax.vecmath;
import java.lang.Math;
/**
* A four-element axis angle represented by single-precision floating point
* x,y,z,angle components. An axis angle is a rotation of angle (radians)
* about the vector (x,y,z).
*
*/
public class AxisAngle4f implements java.io.Serializable, Cloneable {
// Compatible with 1.1
static final long serialVersionUID = -163246355858070601L;
/**
* The x coordinate.
*/
public float x;
/**
* The y coordinate.
*/
public float y;
/**
* The z coordinate.
*/
public float z;
/**
* The angle of rotation in radians.
*/
public float angle;
final static double EPS = 0.000001;
/**
* Constructs and initializes a AxisAngle4f from the specified xyzw coordinates.
* @param x the x coordinate
* @param y the y coordinate
* @param z the z coordinate
* @param angle the angle of rotation in radians
*/
public AxisAngle4f(float x, float y, float z, float angle)
{
this.x = x;
this.y = y;
this.z = z;
this.angle = angle;
}
/**
* Constructs and initializes an AxisAngle4f from the array of length 4.
* @param a the array of length 4 containing x,y,z,angle in order
*/
public AxisAngle4f(float[] a)
{
this.x = a[0];
this.y = a[1];
this.z = a[2];
this.angle = a[3];
}
/**
* Constructs and initializes an AxisAngle4f from the specified
* AxisAngle4f.
* @param a1 the AxisAngle4f containing the initialization x y z angle data
*/
public AxisAngle4f(AxisAngle4f a1)
{
this.x = a1.x;
this.y = a1.y;
this.z = a1.z;
this.angle = a1.angle;
}
/**
* Constructs and initializes an AxisAngle4f from the specified AxisAngle4d.
* @param a1 the AxisAngle4d containing the initialization x y z angle data
*/
public AxisAngle4f(AxisAngle4d a1)
{
this.x = (float) a1.x;
this.y = (float) a1.y;
this.z = (float) a1.z;
this.angle = (float) a1.angle;
}
/**
* Constructs and initializes an AxisAngle4f from the specified
* axis and angle.
* @param axis the axis
* @param angle the angle of rotation in radians
*
* @since vecmath 1.2
*/
public AxisAngle4f(Vector3f axis, float angle) {
this.x = axis.x;
this.y = axis.y;
this.z = axis.z;
this.angle = angle;
}
/**
* Constructs and initializes an AxisAngle4f to (0,0,1,0).
*/
public AxisAngle4f()
{
this.x = 0.0f;
this.y = 0.0f;
this.z = 1.0f;
this.angle = 0.0f;
}
/**
* Sets the value of this axis-angle to the specified x,y,z,angle.
* @param x the x coordinate
* @param y the y coordinate
* @param z the z coordinate
* @param angle the angle of rotation in radians
*/
public final void set(float x, float y, float z, float angle)
{
this.x = x;
this.y = y;
this.z = z;
this.angle = angle;
}
/**
* Sets the value of this axis-angle to the specified values in the
* array of length 4.
* @param a the array of length 4 containing x,y,z,angle in order
*/
public final void set(float[] a)
{
this.x = a[0];
this.y = a[1];
this.z = a[2];
this.angle = a[3];
}
/**
* Sets the value of this axis-angle to the value of axis-angle a1.
* @param a1 the axis-angle to be copied
*/
public final void set(AxisAngle4f a1)
{
this.x = a1.x;
this.y = a1.y;
this.z = a1.z;
this.angle = a1.angle;
}
/**
* Sets the value of this axis-angle to the value of axis-angle a1.
* @param a1 the axis-angle to be copied
*/
public final void set(AxisAngle4d a1)
{
this.x = (float) a1.x;
this.y = (float) a1.y;
this.z = (float) a1.z;
this.angle = (float) a1.angle;
}
/**
* Sets the value of this AxisAngle4f to the specified
* axis and angle.
* @param axis the axis
* @param angle the angle of rotation in radians
*
* @since vecmath 1.2
*/
public final void set(Vector3f axis, float angle) {
this.x = axis.x;
this.y = axis.y;
this.z = axis.z;
this.angle = angle;
}
/**
* Copies the value of this axis-angle into the array a.
* @param a the array
*/
public final void get(float[] a)
{
a[0] = this.x;
a[1] = this.y;
a[2] = this.z;
a[3] = this.angle;
}
/**
* Sets the value of this axis-angle to the rotational equivalent
* of the passed quaternion.
* If the specified quaternion has no rotational component, the value
* of this AxisAngle4f is set to an angle of 0 about an axis of (0,1,0).
* @param q1 the Quat4f
*/
public final void set(Quat4f q1)
{
double mag = q1.x*q1.x + q1.y*q1.y + q1.z*q1.z;
if ( mag > EPS ) {
mag = Math.sqrt(mag);
double invMag = 1.0/mag;
x = (float)(q1.x*invMag);
y = (float)(q1.y*invMag);
z = (float)(q1.z*invMag);
angle = (float)(2.0*Math.atan2(mag, q1.w));
} else {
x = 0.0f;
y = 1.0f;
z = 0.0f;
angle = 0.0f;
}
}
/**
* Sets the value of this axis-angle to the rotational equivalent
* of the passed quaternion.
* If the specified quaternion has no rotational component, the value
* of this AxisAngle4f is set to an angle of 0 about an axis of (0,1,0).
* @param q1 the Quat4d
*/
public final void set(Quat4d q1)
{
double mag = q1.x*q1.x + q1.y*q1.y + q1.z*q1.z;
if (mag > EPS) {
mag = Math.sqrt(mag);
double invMag = 1.0/mag;
x = (float)(q1.x*invMag);
y = (float)(q1.y*invMag);
z = (float)(q1.z*invMag);
angle = (float)(2.0*Math.atan2(mag, q1.w));
} else {
x = 0.0f;
y = 1.0f;
z = 0.0f;
angle = 0.0f;
}
}
/**
* Sets the value of this axis-angle to the rotational component of
* the passed matrix.
* If the specified matrix has no rotational component, the value
* of this AxisAngle4f is set to an angle of 0 about an axis of (0,1,0).
* @param m1 the matrix4f
*/
public final void set(Matrix4f m1)
{
Matrix3f m3f = new Matrix3f();
m1.get(m3f);
x = m3f.m21 - m3f.m12;
y = m3f.m02 - m3f.m20;
z = m3f.m10 - m3f.m01;
double mag = x*x + y*y + z*z;
if (mag > EPS) {
mag = Math.sqrt(mag);
double sin = 0.5*mag;
double cos = 0.5*(m3f.m00 + m3f.m11 + m3f.m22 - 1.0);
angle = (float)Math.atan2(sin, cos);
double invMag = 1.0/mag;
x = (float)(x*invMag);
y = (float)(y*invMag);
z = (float)(z*invMag);
} else {
x = 0.0f;
y = 1.0f;
z = 0.0f;
angle = 0.0f;
}
}
/**
* Sets the value of this axis-angle to the rotational component of
* the passed matrix.
* If the specified matrix has no rotational component, the value
* of this AxisAngle4f is set to an angle of 0 about an axis of (0,1,0).
* @param m1 the matrix4d
*/
public final void set(Matrix4d m1)
{
Matrix3d m3d = new Matrix3d();
m1.get(m3d);
x = (float)(m3d.m21 - m3d.m12);
y = (float)(m3d.m02 - m3d.m20);
z = (float)(m3d.m10 - m3d.m01);
double mag = x*x + y*y + z*z;
if (mag > EPS) {
mag = Math.sqrt(mag);
double sin = 0.5*mag;
double cos = 0.5*(m3d.m00 + m3d.m11 + m3d.m22 - 1.0);
angle = (float)Math.atan2(sin, cos);
double invMag = 1.0/mag;
x = (float)(x*invMag);
y = (float)(y*invMag);
z = (float)(z*invMag);
} else {
x = 0.0f;
y = 1.0f;
z = 0.0f;
angle = 0.0f;
}
}
/**
* Sets the value of this axis-angle to the rotational component of
* the passed matrix.
* If the specified matrix has no rotational component, the value
* of this AxisAngle4f is set to an angle of 0 about an axis of (0,1,0).
* @param m1 the matrix3f
*/
public final void set(Matrix3f m1)
{
x = (float)(m1.m21 - m1.m12);
y = (float)(m1.m02 - m1.m20);
z = (float)(m1.m10 - m1.m01);
double mag = x*x + y*y + z*z;
if (mag > EPS) {
mag = Math.sqrt(mag);
double sin = 0.5*mag;
double cos = 0.5*(m1.m00 + m1.m11 + m1.m22 - 1.0);
angle = (float)Math.atan2(sin, cos);
double invMag = 1.0/mag;
x = (float)(x*invMag);
y = (float)(y*invMag);
z = (float)(z*invMag);
} else {
x = 0.0f;
y = 1.0f;
z = 0.0f;
angle = 0.0f;
}
}
/**
* Sets the value of this axis-angle to the rotational component of
* the passed matrix.
* If the specified matrix has no rotational component, the value
* of this AxisAngle4f is set to an angle of 0 about an axis of (0,1,0).
* @param m1 the matrix3d
*/
public final void set(Matrix3d m1)
{
x = (float)(m1.m21 - m1.m12);
y = (float)(m1.m02 - m1.m20);
z = (float)(m1.m10 - m1.m01);
double mag = x*x + y*y + z*z;
if (mag > EPS) {
mag = Math.sqrt(mag);
double sin = 0.5*mag;
double cos = 0.5*(m1.m00 + m1.m11 + m1.m22 - 1.0);
angle = (float)Math.atan2(sin, cos);
double invMag = 1.0/mag;
x = (float)(x*invMag);
y = (float)(y*invMag);
z = (float)(z*invMag);
} else {
x = 0.0f;
y = 1.0f;
z = 0.0f;
angle = 0.0f;
}
}
/**
* Returns a string that contains the values of this AxisAngle4f.
* The form is (x,y,z,angle).
* @return the String representation
*/
public String toString() {
return "(" + this.x + ", " + this.y + ", " + this.z + ", " + this.angle + ")";
}
/**
* Returns true if all of the data members of AxisAngle4f a1 are
* equal to the corresponding data members in this AxisAngle4f.
* @param a1 the axis-angle with which the comparison is made
* @return true or false
*/
public boolean equals(AxisAngle4f a1)
{
try {
return(this.x == a1.x && this.y == a1.y && this.z == a1.z
&& this.angle == a1.angle);
}
catch (NullPointerException e2) {return false;}
}
/**
* Returns true if the Object o1 is of type AxisAngle4f and all of the
* data members of o1 are equal to the corresponding data members in
* this AxisAngle4f.
* @param o1 the object with which the comparison is made
* @return true or false
*/
public boolean equals(Object o1)
{
try {
AxisAngle4f a2 = (AxisAngle4f) o1;
return(this.x == a2.x && this.y == a2.y && this.z == a2.z
&& this.angle == a2.angle);
}
catch (NullPointerException e2) {return false;}
catch (ClassCastException e1) {return false;}
}
/**
* Returns true if the L-infinite distance between this axis-angle
* and axis-angle a1 is less than or equal to the epsilon parameter,
* otherwise returns false. The L-infinite
* distance is equal to
* MAX[abs(x1-x2), abs(y1-y2), abs(z1-z2), abs(angle1-angle2)].
* @param a1 the axis-angle to be compared to this axis-angle
* @param epsilon the threshold value
*/
public boolean epsilonEquals(AxisAngle4f a1, float epsilon)
{
float diff;
diff = x - a1.x;
if((diff<0?-diff:diff) > epsilon) return false;
diff = y - a1.y;
if((diff<0?-diff:diff) > epsilon) return false;
diff = z - a1.z;
if((diff<0?-diff:diff) > epsilon) return false;
diff = angle - a1.angle;
if((diff<0?-diff:diff) > epsilon) return false;
return true;
}
/**
* Returns a hash code value based on the data values in this
* object. Two different AxisAngle4f objects with identical data values
* (i.e., AxisAngle4f.equals returns true) will return the same hash
* code value. Two objects with different data members may return the
* same hash value, although this is not likely.
* @return the integer hash code value
*/
public int hashCode() {
long bits = 1L;
bits = 31L * bits + (long)VecMathUtil.floatToIntBits(x);
bits = 31L * bits + (long)VecMathUtil.floatToIntBits(y);
bits = 31L * bits + (long)VecMathUtil.floatToIntBits(z);
bits = 31L * bits + (long)VecMathUtil.floatToIntBits(angle);
return (int) (bits ^ (bits >> 32));
}
/**
* Creates a new object of the same class as this object.
*
* @return a clone of this instance.
* @exception OutOfMemoryError if there is not enough memory.
* @see java.lang.Cloneable
* @since vecmath 1.3
*/
public Object clone() {
// Since there are no arrays we can just use Object.clone()
try {
return super.clone();
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
}
/**
* Get the axis angle, in radians.
* An axis angle is a rotation angle about the vector (x,y,z).
*
* @return Returns the angle, in radians.
*
* @since vecmath 1.5
*/
public final float getAngle() {
return angle;
}
/**
* Set the axis angle, in radians.
* An axis angle is a rotation angle about the vector (x,y,z).
*
* @param angle The angle to set, in radians.
*
* @since vecmath 1.5
*/
public final void setAngle(float angle) {
this.angle = angle;
}
/**
* Get value of x coordinate.
*
* @return the x coordinate.
*
* @since vecmath 1.5
*/
public final float getX() {
return x;
}
/**
* Set a new value for x coordinate.
*
* @param x the x coordinate.
*
* @since vecmath 1.5
*/
public final void setX(float x) {
this.x = x;
}
/**
* Get value of y coordinate.
*
* @return the y coordinate
*
* @since vecmath 1.5
*/
public final float getY() {
return y;
}
/**
* Set a new value for y coordinate.
*
* @param y the y coordinate.
*
* @since vecmath 1.5
*/
public final void setY(float y) {
this.y = y;
}
/**
* Get value of z coordinate.
*
* @return the z coordinate.
*
* @since vecmath 1.5
*/
public final float getZ() {
return z;
}
/**
* Set a new value for z coordinate.
*
* @param z the z coordinate.
*
* @since vecmath 1.5
*/
public final void setZ(float z) {
this.z = z;
}
}