/* * Portions Copyright (C) 2003 Sun Microsystems, Inc. * All rights reserved. */ /* * * COPYRIGHT NVIDIA CORPORATION 2003. ALL RIGHTS RESERVED. * BY ACCESSING OR USING THIS SOFTWARE, YOU AGREE TO: * * 1) ACKNOWLEDGE NVIDIA'S EXCLUSIVE OWNERSHIP OF ALL RIGHTS * IN AND TO THE SOFTWARE; * * 2) NOT MAKE OR DISTRIBUTE COPIES OF THE SOFTWARE WITHOUT * INCLUDING THIS NOTICE AND AGREEMENT; * * 3) ACKNOWLEDGE THAT TO THE MAXIMUM EXTENT PERMITTED BY * APPLICABLE LAW, THIS SOFTWARE IS PROVIDED *AS IS* AND * THAT NVIDIA AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES, * EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED * TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE. * * IN NO EVENT SHALL NVIDIA OR ITS SUPPLIERS BE LIABLE FOR ANY * SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES * WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS * OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS * INFORMATION, OR ANY OTHER PECUNIARY LOSS), INCLUDING ATTORNEYS' * FEES, RELATING TO THE USE OF OR INABILITY TO USE THIS SOFTWARE, * EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. * */ package demos.proceduralTexturePhysics; import com.jogamp.opengl.util.FileUtil; import com.jogamp.opengl.util.texture.Texture; import com.jogamp.opengl.util.texture.TextureData; import com.jogamp.opengl.util.texture.TextureIO; import demos.util.Cubemap; import gleem.linalg.Mat4f; import gleem.linalg.Rotf; import java.io.IOException; import java.util.ArrayList; import java.util.Iterator; import java.util.List; import javax.media.opengl.GLProfile; import javax.media.opengl.GL; import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLDrawableFactory; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLException; import javax.media.opengl.GLPbuffer; import javax.media.opengl.glu.GLU; /** * Auxiliary Water simulation class used by ProceduralTexturePhysics * main loop. Demonstration by NVidia Corporation. * *

* * Ported to Java and ARB_fragment_program by Kenneth Russell */ public class Water { // Note: this class is organized differently than most of the demos // due to the fact that it is used for two purposes: when the // pbuffer's context is current it is used to update the cellular // automata, and when the parent drawable's context is current it is // used to render the water geometry (with the parent drawable's GL // object). private GLU glu = new GLU(); // Rendering modes public static final int CA_FULLSCREEN_REFLECT = 0; public static final int CA_FULLSCREEN_FORCE = 1; public static final int CA_FULLSCREEN_HEIGHT = 2; public static final int CA_FULLSCREEN_NORMALMAP = 3; public static final int CA_TILED_THREE_WINDOWS = 4; public static final int CA_DO_NOT_RENDER = 5; private int[] initialMapDimensions = new int[2]; private TextureData initialMapData; private String tmpSpinFilename; private String tmpDropletFilename; private String tmpCubeMapFilenamePrefix; private String tmpCubeMapFilenameSuffix; private GLPbuffer pbuffer; private Rotf cameraOrientation = new Rotf(); // Dynamic texture names private static final int CA_TEXTURE_FORCE_INTERMEDIATE = 0; private static final int CA_TEXTURE_FORCE_TARGET = 1; private static final int CA_TEXTURE_VELOCITY_SOURCE = 2; private static final int CA_TEXTURE_VELOCITY_TARGET = 3; private static final int CA_TEXTURE_HEIGHT_SOURCE = 4; private static final int CA_TEXTURE_HEIGHT_TARGET = 5; private static final int CA_TEXTURE_NORMAL_MAP = 6; private static final int CA_NUM_DYNAMIC_TEXTURES = 7; // List names private static final int CA_FRAGMENT_PROGRAM_EQ_WEIGHT_COMBINE = 0; private static final int CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_1 = 1; private static final int CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_2 = 2; private static final int CA_FRAGMENT_PROGRAM_APPLY_FORCE = 3; private static final int CA_FRAGMENT_PROGRAM_APPLY_VELOCITY = 4; private static final int CA_FRAGMENT_PROGRAM_CREATE_NORMAL_MAP = 5; private static final int CA_FRAGMENT_PROGRAM_REFLECT = 6; private static final int CA_DRAW_SCREEN_QUAD = 7; private static final int CA_NUM_LISTS = 8; // Static textures private Texture initialMapTex; private Texture spinTex; private Texture dropletTex; private Texture cubemap; private Texture[] dynamicTextures = new Texture[CA_NUM_DYNAMIC_TEXTURES]; private int texHeightInput; // current input height texture ID. private int texHeightOutput; // current output height texture ID. private int texVelocityInput; // current input velocity texture ID. private int texVelocityOutput; // current output velocity texture ID. private int texForceStepOne; // intermediate force computation result texture ID. private int texForceOutput; // current output force texture ID. private int[] displayListIDs = new int[CA_NUM_LISTS]; private int vertexProgramID; // one vertex program is used to choose the texcoord offset private int flipState; // used to flip target texture configurations. private boolean wrap; // CA can either wrap its borders, or clamp (clamp by default) private boolean reset = true; // are we resetting this frame? (user hit reset). private boolean singleStep; // animation step on keypress. private boolean animate = true; // continuous animation. private boolean slow = true; // run slow. private boolean wireframe; // render in wireframe mode private boolean applyInteriorBoundaries = true; // enable / disable "boundary" image drawing. private boolean spinLogo = true; // draw spinning logo. private boolean createNormalMap = true; // enable / disable normal map creation. private float perTexelWidth; // width of a texel (percentage of texture) private float perTexelHeight; // height of a texel private float blurDist = 0.5f; // distance over which to blur. private boolean mustUpdateBlurOffsets; // flag indicating blurDist was set last tick private float normalSTScale = 0.8f; // scale of normals in normal map. private float bumpScale = 0.25f; // scale of bumps in water. private float dropletFrequency = 0.175f; // frequency at which droplets are drawn in water... private int slowDelay = 1; // amount (milliseconds) to delay when running slow. private int skipInterval; // frames to skip simulation. private int skipCount; // frame count for skipping rendering private int angle; // angle in degrees for spinning logo private List/**/ droplets = new ArrayList/**/(); // array of droplets private int renderMode; // Constant memory locations private static final int CV_UV_OFFSET_TO_USE = 0; private static final int CV_UV_T0_NO_OFFSET = 1; private static final int CV_UV_T0_TYPE1 = 2; private static final int CV_UV_T0_TYPE2 = 3; private static final int CV_UV_T0_TYPE3 = 4; private static final int CV_UV_T0_TYPE4 = 5; private static final int CV_UV_T1_NO_OFFSET = 6; private static final int CV_UV_T1_TYPE1 = 7; private static final int CV_UV_T1_TYPE2 = 8; private static final int CV_UV_T1_TYPE3 = 9; private static final int CV_UV_T1_TYPE4 = 10; private static final int CV_UV_T2_NO_OFFSET = 11; private static final int CV_UV_T2_TYPE1 = 12; private static final int CV_UV_T2_TYPE2 = 13; private static final int CV_UV_T2_TYPE3 = 14; private static final int CV_UV_T2_TYPE4 = 15; private static final int CV_UV_T3_NO_OFFSET = 16; private static final int CV_UV_T3_TYPE1 = 17; private static final int CV_UV_T3_TYPE2 = 18; private static final int CV_UV_T3_TYPE3 = 19; private static final int CV_UV_T3_TYPE4 = 20; private static final int CV_CONSTS_1 = 21; public void initialize(String initialMapFilename, String spinFilename, String dropletFilename, String cubeMapFilenamePrefix, String cubeMapFilenameSuffix, GLAutoDrawable parentWindow) { GLCapabilities caps = parentWindow.getChosenGLCapabilities(); loadInitialTexture(caps.getGLProfile(), initialMapFilename); tmpSpinFilename = spinFilename; tmpDropletFilename = dropletFilename; tmpCubeMapFilenamePrefix = cubeMapFilenamePrefix; tmpCubeMapFilenameSuffix = cubeMapFilenameSuffix; // create the pbuffer. Will use this as an offscreen rendering buffer. // it allows rendering a texture larger than our window. caps.setDoubleBuffered(false); if (!GLDrawableFactory.getFactory(caps.getGLProfile()).canCreateGLPbuffer(null)) { throw new GLException("Pbuffers not supported with this graphics card"); } pbuffer = GLDrawableFactory.getFactory(caps.getGLProfile()).createGLPbuffer(caps, null, initialMapDimensions[0], initialMapDimensions[1], parentWindow.getContext()); pbuffer.addGLEventListener(new Listener()); } public void destroy() { if (pbuffer != null) { pbuffer.destroy(); pbuffer = null; } reset = true; } public void tick() { pbuffer.display(); } public void draw(GL2 gl, Rotf cameraOrientation) { this.cameraOrientation.set(cameraOrientation); if (skipCount >= skipInterval && renderMode != CA_DO_NOT_RENDER) { skipCount = 0; // Display the results of the rendering to texture if (wireframe) { gl.glPolygonMode(GL2.GL_FRONT_AND_BACK, GL2.GL_LINE); // chances are the texture will be all dark, so lets not use a texture gl.glDisable(GL2.GL_TEXTURE_2D); } else { gl.glPolygonMode(GL2.GL_FRONT_AND_BACK, GL2.GL_FILL); gl.glActiveTexture(GL2.GL_TEXTURE0); gl.glEnable(GL2.GL_TEXTURE_2D); } switch (renderMode) { case CA_FULLSCREEN_REFLECT: { // include bump scale... Mat4f bscale = new Mat4f(); bscale.makeIdent(); bscale.set(0, 0, bumpScale); bscale.set(1, 1, bumpScale); Mat4f rot = new Mat4f(); rot.makeIdent(); rot.setRotation(cameraOrientation); Mat4f matRot = rot.mul(bscale); gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_REFLECT]); // Draw quad over full display gl.glActiveTexture(GL2.GL_TEXTURE0); dynamicTextures[CA_TEXTURE_NORMAL_MAP].bind(); dynamicTextures[CA_TEXTURE_NORMAL_MAP].disable(); gl.glActiveTexture(GL2.GL_TEXTURE3); cubemap.bind(); cubemap.enable(); gl.glColor4f(1, 1, 1, 1); gl.glBegin(GL2.GL_QUADS); gl.glMultiTexCoord2f(GL2.GL_TEXTURE0, 0,0); gl.glMultiTexCoord4f(GL2.GL_TEXTURE1, matRot.get(0,0), matRot.get(0,1), matRot.get(0,2), 1); gl.glMultiTexCoord4f(GL2.GL_TEXTURE2, matRot.get(1,0), matRot.get(1,1), matRot.get(1,2), 1); gl.glMultiTexCoord4f(GL2.GL_TEXTURE3, matRot.get(2,0), matRot.get(2,1), matRot.get(2,2), 1); gl.glVertex2f(-1,-1); gl.glMultiTexCoord2f(GL2.GL_TEXTURE0, 1,0); gl.glMultiTexCoord4f(GL2.GL_TEXTURE1, matRot.get(0,0), matRot.get(0,1), matRot.get(0,2), -1); gl.glMultiTexCoord4f(GL2.GL_TEXTURE2, matRot.get(1,0), matRot.get(1,1), matRot.get(1,2), 1); gl.glMultiTexCoord4f(GL2.GL_TEXTURE3, matRot.get(2,0), matRot.get(2,1), matRot.get(2,2), 1); gl.glVertex2f( 1,-1); gl.glMultiTexCoord2f(GL2.GL_TEXTURE0, 1,1); gl.glMultiTexCoord4f(GL2.GL_TEXTURE1, matRot.get(0,0), matRot.get(0,1), matRot.get(0,2), -1); gl.glMultiTexCoord4f(GL2.GL_TEXTURE2, matRot.get(1,0), matRot.get(1,1), matRot.get(1,2), -1); gl.glMultiTexCoord4f(GL2.GL_TEXTURE3, matRot.get(2,0), matRot.get(2,1), matRot.get(2,2), 1); gl.glVertex2f( 1, 1); gl.glMultiTexCoord2f(GL2.GL_TEXTURE0, 0,1); gl.glMultiTexCoord4f(GL2.GL_TEXTURE1, matRot.get(0,0), matRot.get(0,1), matRot.get(0,2), 1); gl.glMultiTexCoord4f(GL2.GL_TEXTURE2, matRot.get(1,0), matRot.get(1,1), matRot.get(1,2), -1); gl.glMultiTexCoord4f(GL2.GL_TEXTURE3, matRot.get(2,0), matRot.get(2,1), matRot.get(2,2), 1); gl.glVertex2f(-1, 1); gl.glEnd(); cubemap.disable(); gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB); break; } case CA_FULLSCREEN_NORMALMAP: { // Draw quad over full display gl.glActiveTexture(GL2.GL_TEXTURE0); dynamicTextures[CA_TEXTURE_NORMAL_MAP].bind(); gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); break; } case CA_FULLSCREEN_HEIGHT: { // Draw quad over full display gl.glActiveTexture(GL2.GL_TEXTURE0); gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightOutput); gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); break; } case CA_FULLSCREEN_FORCE: { // Draw quad over full display gl.glActiveTexture(GL2.GL_TEXTURE0); dynamicTextures[CA_TEXTURE_FORCE_TARGET].bind(); gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); break; } case CA_TILED_THREE_WINDOWS: { // Draw quad over full display // lower left gl.glActiveTexture(GL2.GL_TEXTURE0); dynamicTextures[CA_TEXTURE_FORCE_TARGET].bind(); gl.glMatrixMode(GL2.GL_MODELVIEW); gl.glPushMatrix(); gl.glTranslatef(-0.5f, -0.5f, 0); gl.glScalef(0.5f, 0.5f, 1); gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); gl.glPopMatrix(); // lower right gl.glBindTexture(GL2.GL_TEXTURE_2D, texVelocityOutput); gl.glPushMatrix(); gl.glTranslatef(0.5f, -0.5f, 0); gl.glScalef(0.5f, 0.5f, 1); gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); gl.glPopMatrix(); // upper left dynamicTextures[CA_TEXTURE_NORMAL_MAP].bind(); gl.glMatrixMode(GL2.GL_MODELVIEW); gl.glPushMatrix(); gl.glTranslatef(-0.5f, 0.5f, 0); gl.glScalef(0.5f, 0.5f, 1); gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); gl.glPopMatrix(); // upper right gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightOutput); gl.glMatrixMode(GL2.GL_MODELVIEW); gl.glPushMatrix(); gl.glTranslatef(0.5f, 0.5f, 0); gl.glScalef(0.5f, 0.5f, 1); gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); gl.glPopMatrix(); break; } } } else { // skip rendering this frame skipCount++; } } public void singleStep() { singleStep = true; } public void enableAnimation(boolean enable) { animate = enable; } public void enableSlowAnimation(boolean enable) { slow = enable; } public void reset() { reset = true; } public void setRenderMode(int mode) { renderMode = mode; } public void enableWireframe(boolean enable) { wireframe = enable; } public void enableBorderWrapping(boolean enable) { wrap = enable; } public void enableBoundaryApplication(boolean enable) { applyInteriorBoundaries = enable; } public void enableSpinningLogo(boolean enable) { spinLogo = enable; } public void setBlurDistance(float distance) { blurDist = distance; mustUpdateBlurOffsets = true; } public float getBlurDistance() { return blurDist; } public void setBumpScale(float scale) { bumpScale = scale; } public float getBumpScale() { return bumpScale; } public void setDropFrequency(float frequency) { dropletFrequency = frequency; } public float getDropFrequency() { return dropletFrequency; } public static class Droplet { private float rX; private float rY; private float rScale; Droplet(float rX, float rY, float rScale) { this.rX = rX; this.rY = rY; this.rScale = rScale; } float rX() { return rX; } float rY() { return rY; } float rScale() { return rScale; } } public synchronized void addDroplet(Droplet drop) { droplets.add(drop); } //---------------------------------------------------------------------- // Internals only below this point // class Listener implements GLEventListener { public void init(GLAutoDrawable drawable) { GL2 gl = drawable.getGL().getGL2(); initOpenGL(gl); } public void dispose(GLAutoDrawable drawable) { } public void display(GLAutoDrawable drawable) { GL2 gl = drawable.getGL().getGL2(); if (mustUpdateBlurOffsets) { updateBlurVertOffset(gl); mustUpdateBlurOffsets = false; } // Take a single step in the cellular automaton // Disable culling gl.glDisable(GL2.GL_CULL_FACE); if (reset) { reset = false; flipState = 0; } if (animate) { // Update the textures for one step of the simulation doSingleTimeStep(gl); } else if (singleStep) { doSingleTimeStep(gl); singleStep = false; } // Force rendering to pbuffer to complete gl.glFlush(); if (slow && (slowDelay > 0) ) { try { Thread.sleep(slowDelay); } catch (InterruptedException e) { } } } public void reshape(GLAutoDrawable drawable, int x, int y, int width, int height) {} // Unused routines public void displayChanged(GLAutoDrawable drawable, boolean modeChanged, boolean deviceChanged) {} } // We need to load the initial texture file early to get the width // and height for the pbuffer private void loadInitialTexture(GLProfile glp, String initialMapFilename) { try { initialMapData = TextureIO.newTextureData(glp, getClass().getClassLoader().getResourceAsStream(initialMapFilename), false, FileUtil.getFileSuffix(initialMapFilename)); } catch (IOException e) { throw new GLException(e); } initialMapDimensions[0] = initialMapData.getWidth(); initialMapDimensions[1] = initialMapData.getHeight(); } private void initOpenGL(GL2 gl) { try { loadTextures(gl, tmpSpinFilename, tmpDropletFilename, tmpCubeMapFilenamePrefix, tmpCubeMapFilenameSuffix); } catch (IOException e) { throw new GLException(e); } tmpSpinFilename = null; tmpDropletFilename = null; tmpCubeMapFilenamePrefix = null; tmpCubeMapFilenameSuffix = null; gl.glMatrixMode(GL2.GL_MODELVIEW); gl.glLoadIdentity(); gl.glMatrixMode(GL2.GL_PROJECTION); gl.glLoadIdentity(); glu.gluOrtho2D(-1, 1, -1, 1); gl.glClearColor(0, 0, 0, 0); gl.glDisable(GL2.GL_LIGHTING); gl.glDisable(GL2.GL_DEPTH_TEST); createAndWriteUVOffsets(gl, initialMapDimensions[0], initialMapDimensions[1]); checkExtension(gl, "GL_ARB_vertex_program"); checkExtension(gl, "GL_ARB_fragment_program"); checkExtension(gl, "GL_ARB_multitexture"); /////////////////////////////////////////////////////////////////////////// // UV Offset Vertex Program /////////////////////////////////////////////////////////////////////////// int[] tmpInt = new int[1]; gl.glGenProgramsARB(1, tmpInt, 0); vertexProgramID = tmpInt[0]; gl.glBindProgramARB(GL2.GL_VERTEX_PROGRAM_ARB, vertexProgramID); String programBuffer = "!!ARBvp1.0\n" + "# Constant memory location declarations (must match those in Java sources)\n" + "# CV_UV_OFFSET_TO_USE = 0\n" + "\n" + "# CV_UV_T0_NO_OFFSET = 1\n" + "# CV_UV_T0_TYPE1 = 2\n" + "# CV_UV_T0_TYPE2 = 3\n" + "# CV_UV_T0_TYPE3 = 4\n" + "# CV_UV_T0_TYPE4 = 5\n" + "\n" + "# CV_UV_T1_NO_OFFSET = 6\n" + "# CV_UV_T1_TYPE1 = 7\n" + "# CV_UV_T1_TYPE2 = 8\n" + "# CV_UV_T1_TYPE3 = 9\n" + "# CV_UV_T1_TYPE4 = 10\n" + "\n" + "# CV_UV_T2_NO_OFFSET = 11\n" + "# CV_UV_T2_TYPE1 = 12\n" + "# CV_UV_T2_TYPE2 = 13\n" + "# CV_UV_T2_TYPE3 = 14\n" + "# CV_UV_T2_TYPE4 = 15\n" + "\n" + "# CV_UV_T3_NO_OFFSET = 16\n" + "# CV_UV_T3_TYPE1 = 17\n" + "# CV_UV_T3_TYPE2 = 18\n" + "# CV_UV_T3_TYPE3 = 19\n" + "# CV_UV_T3_TYPE4 = 20\n" + "\n" + "# CV_CONSTS_1 = 21\n" + "\n" + "# Parameters\n" + "PARAM mvp [4] = { state.matrix.mvp }; # modelview projection matrix\n" + "PARAM uvOffsetToUse = program.env[0];\n" + "PARAM uvOffsets[20] = { program.env[1..20] };\n" + "\n" + "# Addresses\n" + "ADDRESS addr;\n" + "\n" + "# Per vertex inputs\n" + "ATTRIB iPos = vertex.position; #position\n" + "\n" + "# Outputs\n" + "OUTPUT oPos = result.position; #position\n" + "\n" + "# Transform vertex-position to clip-space\n" + "DP4 oPos.x, iPos, mvp[0];\n" + "DP4 oPos.y, iPos, mvp[1];\n" + "DP4 oPos.z, iPos, mvp[2];\n" + "DP4 oPos.w, iPos, mvp[3];\n" + "\n" + "# Read which set of offsets to use\n" + "ARL addr.x, uvOffsetToUse.x;\n" + "\n" + "# c[CV_CONSTS_1] = c[28]\n" + "# x = 0\n" + "# y = 0.5\n" + "# z = 1\n" + "# w = 2.0f\n" + "\n" + "# Put a scale factor into r0 so the sample points\n" + "# can be moved farther from the texel being written\n" + "# MOV R0, c[28].z;\n" + "\n" + "# Add the offsets to the input texture\n" + "# coordinate, creating 4 sets of independent\n" + "# texture coordinates.\n" + "ADD result.texcoord[0], uvOffsets[addr.x ], vertex.texcoord[0];\n" + "ADD result.texcoord[1], uvOffsets[addr.x + 5 ], vertex.texcoord[0];\n" + "ADD result.texcoord[2], uvOffsets[addr.x + 10], vertex.texcoord[0];\n" + "ADD result.texcoord[3], uvOffsets[addr.x + 15], vertex.texcoord[0];\n" + "\n" + "END\n"; // set up constants (not currently used in the vertex program, though) float[] rCVConsts = new float[] { 0, 0.5f, 1.0f, 2.0f }; gl.glProgramEnvParameter4fvARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_CONSTS_1, rCVConsts, 0); loadProgram(gl, GL2.GL_VERTEX_PROGRAM_ARB, programBuffer); /////////////////////////////////////////////////////////////////////////// // fragment program setup for equal weight combination of texels /////////////////////////////////////////////////////////////////////////// displayListIDs[CA_FRAGMENT_PROGRAM_EQ_WEIGHT_COMBINE] = gl.glGenLists(1); initEqWeightCombine_PostMult(gl, displayListIDs[CA_FRAGMENT_PROGRAM_EQ_WEIGHT_COMBINE]); /////////////////////////////////////////////////////////////////////////// // fragment program setup for computing force from neighbors (step 1) /////////////////////////////////////////////////////////////////////////// displayListIDs[CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_1] = gl.glGenLists(1); initNeighborForceCalcStep1(gl, displayListIDs[CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_1]); /////////////////////////////////////////////////////////////////////////// // fragment program setup for computing force from neighbors (step 2) /////////////////////////////////////////////////////////////////////////// displayListIDs[CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_2] = gl.glGenLists(1); initNeighborForceCalcStep2(gl, displayListIDs[CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_2]); /////////////////////////////////////////////////////////////////////////// // fragment program setup to apply force /////////////////////////////////////////////////////////////////////////// displayListIDs[CA_FRAGMENT_PROGRAM_APPLY_FORCE] = gl.glGenLists(1); initApplyForce(gl, displayListIDs[CA_FRAGMENT_PROGRAM_APPLY_FORCE]); /////////////////////////////////////////////////////////////////////////// // fragment program setup to apply velocity /////////////////////////////////////////////////////////////////////////// displayListIDs[CA_FRAGMENT_PROGRAM_APPLY_VELOCITY] = gl.glGenLists(1); initApplyVelocity(gl, displayListIDs[CA_FRAGMENT_PROGRAM_APPLY_VELOCITY]); /////////////////////////////////////////////////////////////////////////// // fragment program setup to create a normal map /////////////////////////////////////////////////////////////////////////// displayListIDs[CA_FRAGMENT_PROGRAM_CREATE_NORMAL_MAP] = gl.glGenLists(1); initCreateNormalMap(gl, displayListIDs[CA_FRAGMENT_PROGRAM_CREATE_NORMAL_MAP]); /////////////////////////////////////////////////////////////////////////// // fragment program setup for dot product reflection /////////////////////////////////////////////////////////////////////////// displayListIDs[CA_FRAGMENT_PROGRAM_REFLECT] = gl.glGenLists(1); initDotProductReflect(gl, displayListIDs[CA_FRAGMENT_PROGRAM_REFLECT]); /////////////////////////////////////////////////////////////////////////// // display list to render a single screen space quad. /////////////////////////////////////////////////////////////////////////// displayListIDs[CA_DRAW_SCREEN_QUAD] = gl.glGenLists(1); gl.glNewList(displayListIDs[CA_DRAW_SCREEN_QUAD], GL2.GL_COMPILE); gl.glColor4f(1, 1, 1, 1); gl.glBegin(GL2.GL_TRIANGLE_STRIP); gl.glTexCoord2f(0, 1); gl.glVertex2f(-1, 1); gl.glTexCoord2f(0, 0); gl.glVertex2f(-1, -1); gl.glTexCoord2f(1, 1); gl.glVertex2f( 1, 1); gl.glTexCoord2f(1, 0); gl.glVertex2f( 1, -1); gl.glEnd(); gl.glEndList(); } private void checkExtension(GL gl, String extensionName) { if (!gl.isExtensionAvailable(extensionName)) { throw new GLException("Unable to initialize " + extensionName + " OpenGL extension"); } } private void doSingleTimeStep(GL2 gl) { int temp; // Swap texture source & target indices & pointers // 0 = start from initial loaded texture // 1/2 = flip flop back and forth between targets & sources switch (flipState) { case 0: texHeightInput = dynamicTextures[CA_TEXTURE_HEIGHT_SOURCE].getTextureObject(); // initial height map. texHeightOutput = dynamicTextures[CA_TEXTURE_HEIGHT_TARGET].getTextureObject(); // next height map. texVelocityInput = dynamicTextures[CA_TEXTURE_VELOCITY_SOURCE].getTextureObject(); // initial velocity. texVelocityOutput = dynamicTextures[CA_TEXTURE_VELOCITY_TARGET].getTextureObject(); // next velocity. // Clear initial velocity texture to 0x80 == gray gl.glClearColor(0.5f, 0.5f, 0.5f, 1.0f); gl.glClear(GL2.GL_COLOR_BUFFER_BIT); // Now we need to copy the resulting pixels into the intermediate force field texture gl.glActiveTexture(GL2.GL_TEXTURE0); gl.glBindTexture(GL2.GL_TEXTURE_2D, texVelocityInput); // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]); break; case 1: temp = texHeightInput; texHeightInput = texHeightOutput; texHeightOutput = temp; temp = texVelocityInput; texVelocityInput = texVelocityOutput; texVelocityOutput = temp; break; case 2: temp = texHeightInput; texHeightInput = texHeightOutput; texHeightOutput = temp; temp = texVelocityInput; texVelocityInput = texVelocityOutput; texVelocityOutput = temp; break; } // even if wireframe mode, render to texture as solid gl.glPolygonMode(GL2.GL_FRONT_AND_BACK, GL2.GL_FILL); ///////////////////////////////////////////////////////////// // Render first 3 components of force from three neighbors // Offsets selected are 1 center texel for center height // and 3 of the 4 nearest neighbors. Texture selected // is same for all stages as we're turning height difference // of nearest neightbor texels into a force value. gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_1]); // set current source texture for stage 0 texture for (int i = 0; i < 4; i++) { gl.glActiveTexture(GL2.GL_TEXTURE0 + i); gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightInput); gl.glEnable(GL2.GL_TEXTURE_2D); } int wrapMode = wrap ? GL2.GL_REPEAT : GL2.GL_CLAMP_TO_EDGE; gl.glTexParameteri(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_S, wrapMode); gl.glTexParameteri(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_T, wrapMode); // disable blending gl.glDisable(GL2.GL_BLEND); // render using offset 1 (type 1 -- center + 3 of 4 nearest neighbors). gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_OFFSET_TO_USE, 1, 0, 0, 0); // bind the vertex program to be used for this step and the next one. gl.glBindProgramARB(GL2.GL_VERTEX_PROGRAM_ARB, vertexProgramID); gl.glEnable(GL2.GL_VERTEX_PROGRAM_ARB); // render a screen quad. with texture coords doing difference of nearby texels for force calc. gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB); // Now we need to copy the resulting pixels into the intermediate force field texture gl.glActiveTexture(GL2.GL_TEXTURE2); dynamicTextures[CA_TEXTURE_FORCE_INTERMEDIATE].bind(); // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]); //////////////////////////////////////////////////////////////// // Now add in last component of force for the 4th neighbor // that we didn't have enough texture lookups to do in the // first pass gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_2]); // Cannot use additive blending as the force contribution might // be negative and would have to subtract from the dest. // We must instead use an additional texture as target and read // the previous partial 3-neighbor result into the pixel shader // for possible subtraction // Alphablend must be false //; t0 = center (same as last phase) //; t1 = 2nd axis final point (same as last phase) //; t2 = previous partial result texture sampled at center (result of last phase copied to texture) //; t3 = not used (disable now) gl.glTexParameterf(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_S, wrapMode); gl.glTexParameterf(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_T, wrapMode); gl.glActiveTexture(GL2.GL_TEXTURE3); gl.glDisable(GL2.GL_TEXTURE_2D); // vertex program already bound. // render using offset 2 (type 2 -- final nearest neighbor plus center of previous result). gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_OFFSET_TO_USE, 2, 0, 0, 0); // render a screen quad gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB); // Now we need to copy the resulting pixels into the intermediate force field texture gl.glActiveTexture(GL2.GL_TEXTURE1); dynamicTextures[CA_TEXTURE_FORCE_TARGET].bind(); // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]); ///////////////////////////////////////////////////////////////// // Apply the force with a scale factor to reduce it's magnitude. // Add this to the current texture representing the water height. gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_APPLY_FORCE]); // use offsets of zero gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_OFFSET_TO_USE, 0, 0, 0, 0); // bind the vertex program to be used for this step and the next one. gl.glActiveTexture(GL2.GL_TEXTURE0); gl.glBindTexture(GL2.GL_TEXTURE_2D, texVelocityInput); gl.glActiveTexture(GL2.GL_TEXTURE1); dynamicTextures[CA_TEXTURE_FORCE_TARGET].bind(); gl.glActiveTexture(GL2.GL_TEXTURE2); gl.glDisable(GL2.GL_TEXTURE_2D); gl.glActiveTexture(GL2.GL_TEXTURE3); gl.glDisable(GL2.GL_TEXTURE_2D); // Draw the quad to add in force. gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB); /////////////////////////////////////////////////////////////////// // With velocity texture selected, render new excitation droplets // at random freq. float randomFrequency = (float) Math.random(); if (dropletFrequency > randomFrequency) { // a drop falls - decide where Droplet drop = new Droplet(2 * ((float)Math.random() - 0.5f), 2 * ((float)Math.random() - 0.5f), 0.02f + 0.1f * ((float)Math.random())); addDroplet(drop); } // Now draw the droplets: if (!droplets.isEmpty()) { drawDroplets(gl); droplets.clear(); } // Now we need to copy the resulting pixels into the velocity texture gl.glActiveTexture(GL2.GL_TEXTURE1); gl.glBindTexture(GL2.GL_TEXTURE_2D, texVelocityOutput); // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]); ////////////////////////////////////////////////////////////////////// // Apply velocity to position gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_APPLY_VELOCITY]); gl.glEnable(GL2.GL_VERTEX_PROGRAM_ARB); gl.glActiveTexture(GL2.GL_TEXTURE0); gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightInput); gl.glActiveTexture(GL2.GL_TEXTURE1); // velocity output already bound gl.glEnable(GL2.GL_TEXTURE_2D); // use offsets of zero gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_OFFSET_TO_USE, 0, 0, 0, 0); // Draw the quad to add in force. gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB); // Now we need to copy the resulting pixels into the input height texture gl.glActiveTexture(GL2.GL_TEXTURE0); gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightInput); // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]); /////////////////////////////////////////////////////////////////// // blur positions to smooth noise & generaly dampen things // degree of blur is controlled by magnitude of 4 neighbor texel // offsets with bilinear on for (int i = 1; i < 4; i++) { gl.glActiveTexture(GL2.GL_TEXTURE0 + i); gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightInput); gl.glEnable(GL2.GL_TEXTURE_2D); } // use offsets of 3 gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_OFFSET_TO_USE, 3, 0, 0, 0); gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_EQ_WEIGHT_COMBINE]); gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB); // Draw the logo in the water. if (applyInteriorBoundaries) { gl.glDisable(GL2.GL_VERTEX_PROGRAM_ARB); drawInteriorBoundaryObjects(gl); } // Now we need to copy the resulting pixels into the velocity texture gl.glActiveTexture(GL2.GL_TEXTURE0); gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightOutput); // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]); /////////////////////////////////////////////////////////////////// // If selected, create a normal map from the height if (createNormalMap) { createNormalMap(gl); } /////////////////////////////////////////////////////////// // Flip the state variable for the next round of rendering switch (flipState) { case 0: flipState = 1; break; case 1: flipState = 2; break; case 2: flipState = 1; break; } } private void createNormalMap(GL2 gl) { // use the height output on all four texture stages for (int i = 0; i < 4; i++) { gl.glActiveTexture(GL2.GL_TEXTURE0 + i); gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightOutput); gl.glEnable(GL2.GL_TEXTURE_2D); } // Set constants for red & green scale factors (also essential color masks) // Red mask first float[] pixMasks = new float[] { normalSTScale, 0.0f, 0.0f, 0.0f }; gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 0, pixMasks, 0); // Now green mask & scale: pixMasks[0] = 0.0f; pixMasks[1] = normalSTScale; gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 1, pixMasks, 0); gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_CREATE_NORMAL_MAP]); // set vp offsets to nearest neighbors gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_OFFSET_TO_USE, 4, 0, 0, 0); gl.glEnable(GL2.GL_VERTEX_PROGRAM_ARB); gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB); // Now we need to copy the resulting pixels into the normal map gl.glActiveTexture(GL2.GL_TEXTURE0); dynamicTextures[CA_TEXTURE_NORMAL_MAP].bind(); // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]); } private void drawInteriorBoundaryObjects(GL2 gl) { gl.glActiveTexture(GL2.GL_TEXTURE0); initialMapTex.bind(); initialMapTex.enable(); gl.glEnable(GL2.GL_ALPHA_TEST); // disable other texture units. for (int i = 1; i < 4; i++) { gl.glActiveTexture(GL2.GL_TEXTURE0 + i); gl.glDisable(GL2.GL_TEXTURE_2D); } gl.glBlendFunc(GL2.GL_SRC_ALPHA, GL2.GL_ONE_MINUS_SRC_ALPHA); gl.glEnable(GL2.GL_BLEND); gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); if (spinLogo) { gl.glActiveTexture(GL2.GL_TEXTURE0); spinTex.bind(); gl.glMatrixMode(GL2.GL_MODELVIEW); gl.glPushMatrix(); gl.glRotatef(angle, 0, 0, 1); angle += 1; gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); gl.glPopMatrix(); } gl.glDisable(GL2.GL_ALPHA_TEST); gl.glDisable(GL2.GL_BLEND); } private void loadTextures(GL gl, String spinFilename, String dropletFilename, String cubeMapFilenamePrefix, String cubeMapFilenameSuffix) throws IOException { if (initialMapData == null) { throw new GLException("Must call loadInitialTexture ahead of time"); } initialMapTex = TextureIO.newTexture(initialMapData); spinTex = TextureIO.newTexture(getClass().getClassLoader().getResourceAsStream(spinFilename), false, FileUtil.getFileSuffix(spinFilename)); dropletTex = TextureIO.newTexture(getClass().getClassLoader().getResourceAsStream(dropletFilename), false, FileUtil.getFileSuffix(dropletFilename)); // load the cubemap texture cubemap = Cubemap.loadFromStreams(getClass().getClassLoader(), cubeMapFilenamePrefix, cubeMapFilenameSuffix, true); // now create dummy intermediate textures from the initial map texture for (int i = 0; i < CA_NUM_DYNAMIC_TEXTURES; i++) { dynamicTextures[i] = TextureIO.newTexture(initialMapData); } initialMapData = null; texHeightInput = initialMapTex.getTextureObject(); // initial height map. texHeightOutput = dynamicTextures[CA_TEXTURE_HEIGHT_TARGET].getTextureObject(); // next height map. texVelocityInput = dynamicTextures[CA_TEXTURE_VELOCITY_SOURCE].getTextureObject(); // initial velocity. texVelocityOutput = dynamicTextures[CA_TEXTURE_VELOCITY_TARGET].getTextureObject(); // next velocity. } private void createAndWriteUVOffsets(GL2 gl, int width, int height) { // This sets vertex shader constants used to displace the // source texture over several additive samples. This is // used to accumulate neighboring texel information that we // need to run the game - the 8 surrounding texels, and the // single source texel which will either spawn or die in the // next generation. // Label the texels as follows, for a source texel "e" that // we want to compute for the next generation: // // abc // def // ghi: // first the easy one: no offsets for sampling center // occupied or unoccupied // Use index offset value 0.0 to access these in the // vertex shader. perTexelWidth = 1.0f / width; perTexelHeight = 1.0f / height; // Offset set 0 : center texel sampling float[] noOffsetX = new float[] { 0, 0, 0, 0 }; float[] noOffsetY = new float[] { 0, 0, 0, 0 }; // Offset set 1: For use with neighbor force pixel shader 1 // samples center with 0, +u, -u, and +v, // ie the 'e','d', 'f', and 'h' texels float dist = 1.5f; float[] type1OffsetX = new float[] { 0.0f, -dist * perTexelWidth, dist * perTexelWidth, dist * perTexelWidth }; float[] type1OffsetY = new float[] { 0.0f, dist * perTexelHeight, dist * perTexelHeight, -dist * perTexelHeight }; // Offset set 2: for use with neighbor force pixel shader 2 // samples center with 0, and -v texels // ie the 'e' and 'b' texels // This completes a pattern of sampling center texel and it's // 4 nearest neighbors to run the height-based water simulation // 3rd must be 0 0 to sample texel center from partial result // texture. float[] type2OffsetX = new float[] { 0.0f, -dist * perTexelWidth, 0.0f, 0.0f }; float[] type2OffsetY = new float[] { 0.0f, -dist * perTexelHeight, 0.0f, 0.0f }; // type 3 offsets updateBlurVertOffset(gl); ///////////////////////////////////////////////////////////// // Nearest neighbor offsets: float[] type4OffsetX = new float[] { -perTexelWidth, perTexelWidth, 0.0f, 0.0f }; float[] type4OffsetY = new float[] { 0.0f, 0.0f, -perTexelHeight, perTexelHeight }; // write all these offsets to constant memory for (int i = 0; i < 4; ++i) { float noOffset[] = { noOffsetX[i], noOffsetY[i], 0.0f, 0.0f }; float type1Offset[] = { type1OffsetX[i], type1OffsetY[i], 0.0f, 0.0f }; float type2Offset[] = { type2OffsetX[i], type2OffsetY[i], 0.0f, 0.0f }; float type4Offset[] = { type4OffsetX[i], type4OffsetY[i], 0.0f, 0.0f }; gl.glProgramEnvParameter4fvARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_T0_NO_OFFSET + 5 * i, noOffset, 0); gl.glProgramEnvParameter4fvARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_T0_TYPE1 + 5 * i, type1Offset, 0); gl.glProgramEnvParameter4fvARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_T0_TYPE2 + 5 * i, type2Offset, 0); gl.glProgramEnvParameter4fvARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_T0_TYPE4 + 5 * i, type4Offset, 0); } } private void updateBlurVertOffset(GL2 gl) { float[] type3OffsetX = new float[] { -perTexelWidth * 0.5f, perTexelWidth, perTexelWidth * 0.5f, -perTexelWidth }; float[] type3OffsetY = new float[] { perTexelHeight, perTexelHeight * 0.5f, -perTexelHeight, -perTexelHeight * 0.5f }; float[] offsets = new float[] { 0, 0, 0, 0 }; for (int i = 0; i < 4; ++i) { offsets[0] = blurDist * ( type3OffsetX[i]); offsets[1] = blurDist * ( type3OffsetY[i]); gl.glProgramEnvParameter4fvARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_T0_TYPE3 + 5 * i, offsets, 0); } } private synchronized void drawDroplets(GL2 gl) { gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB); gl.glDisable(GL2.GL_VERTEX_PROGRAM_ARB); gl.glActiveTexture(GL2.GL_TEXTURE0); dropletTex.bind(); dropletTex.enable(); gl.glActiveTexture(GL2.GL_TEXTURE1); gl.glDisable(GL2.GL_TEXTURE_2D); gl.glBlendFunc(GL2.GL_ONE, GL2.GL_ONE); gl.glEnable(GL2.GL_BLEND); gl.glBegin(GL2.GL_QUADS); gl.glColor4f(1, 1, 1, 1); for (Iterator iter = droplets.iterator(); iter.hasNext(); ) { Droplet droplet = (Droplet) iter.next(); // coords in [-1,1] range // Draw a single quad to the texture render target // The quad is textured with the initial droplet texture, and // covers some small portion of the render target // Draw the droplet gl.glTexCoord2f(0, 0); gl.glVertex2f(droplet.rX() - droplet.rScale(), droplet.rY() - droplet.rScale()); gl.glTexCoord2f(1, 0); gl.glVertex2f(droplet.rX() + droplet.rScale(), droplet.rY() - droplet.rScale()); gl.glTexCoord2f(1, 1); gl.glVertex2f(droplet.rX() + droplet.rScale(), droplet.rY() + droplet.rScale()); gl.glTexCoord2f(0, 1); gl.glVertex2f(droplet.rX() - droplet.rScale(), droplet.rY() + droplet.rScale()); } gl.glEnd(); gl.glDisable(GL2.GL_BLEND); } //---------------------------------------------------------------------- // Inlined register combiner and texture shader programs // (don't want to port nvparse as it's a dead-end; we'll focus on Cg instead) private void initEqWeightCombine_PostMult(GL2 gl, int displayListID) { // Take samples of all four texture inputs and average them, // adding on a bias // // Original register combiner program: // // Stage 0 // rgb // { // discard = half_bias(tex0); // discard = half_bias(tex1); // spare0 = sum(); // scale_by_one_half(); // } // Stage 1 // rgb // { // discard = half_bias(tex2); // discard = half_bias(tex3); // spare1 = sum(); // scale_by_one_half(); // } // Stage 2 // rgb // { // discard = spare0; // discard = spare1; // spare0 = sum(); // scale_by_one_half(); // } // Stage 3 // rgb // { // discard = const0; // discard = spare0; // spare0 = sum(); // } float[] const0 = new float[] { 0.5f, 0.5f, 0.5f, 1.0f }; int[] tmpInt = new int[1]; gl.glGenProgramsARB(1, tmpInt, 0); int fragProg = tmpInt[0]; gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); String program = "!!ARBfp1.0\n" + "PARAM const0 = program.env[0];\n" + "PARAM oneQtr = { 0.25, 0.25, 0.25, 0.25 };\n" + "PARAM two = { 2.0, 2.0, 2.0, 2.0 };\n" + "TEMP texSamp0, texSamp1, texSamp2, texSamp3;\n" + "TEMP spare0, spare1;\n" + "\n" + "TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" + "TEX texSamp1, fragment.texcoord[1], texture[1], 2D;\n" + "TEX texSamp2, fragment.texcoord[2], texture[2], 2D;\n" + "TEX texSamp3, fragment.texcoord[3], texture[3], 2D;\n" + "ADD spare0, texSamp0, texSamp1;\n" + "ADD spare1, texSamp2, texSamp3;\n" + "ADD spare0, spare0, spare1;\n" + "SUB spare0, spare0, two;\n" + "MAD result.color, oneQtr, spare0, const0;\n" + "\n" + "END\n"; loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program); gl.glNewList(displayListID, GL2.GL_COMPILE); gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 0, const0, 0); gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB); gl.glEndList(); } private void initNeighborForceCalcStep1(GL2 gl, int displayListID) { // Step one in the nearest-neighbor force calculation for height-based water // simulation. NeighborForceCalc2 is the second step. // // This step takes the center point and three neighboring points, and computes // the texel difference as the "force" acting to pull the center texel. // // The amount to which the computed force is applied to the texel is controlled // in a separate shader. // get colors from all 4 texture stages // tex0 = center texel // tex1 = 1st neighbor // tex2 = 2nd neighbor - same axis as 1st neighbor point // so force for that axis == t1 - t0 + t2 - t0 // tex3 = 3rd neighbor on other axis // Original register combiner program: // // Stage 0 // rgb // { // //s0 = t1 - t0; // discard = -tex0; // discard = tex1; // spare0 = sum(); // } // Stage 1 // rgb // { // //s1 = t2 - t0; // discard = -tex0; // discard = tex2; // spare1 = sum(); // } // Stage 2 // // 'force' for 1st axis // rgb // { // //s0 = s0 + s1 = t1 - t0 + t2 - t0; // discard = spare0; // discard = spare1; // spare0 = sum(); // } // Stage 3 // // one more point for 2nd axis // rgb // { // //s1 = t3 - t0; // discard = -tex0; // discard = tex3; // spare1 = sum(); // } // Stage 4 // rgb // { // //s0 = s0 + s1 = t3 - t0 + t2 - t0 + t1 - t0; // discard = spare0; // discard = spare1; // spare0 = sum(); // } // Stage 5 // // Now add in a force to gently pull the center texel's // // value to 0.5. The strength of this is controlled by // // the PCN_EQ_REST_FAC - restoration factor // // Without this, the simulation will fade to zero or fly // // away to saturate at 1.0 // rgb // { // //s1 = 0.5 - t0; // discard = -tex0; // discard = const0; // spare1 = sum(); // } // Stage 6 // { // rgb // { // discard = spare1 * const0; // discard = spare0; // spare0 = sum(); // } // } // Stage 7 // rgb // { // discard = spare0; // discard = const0; // spare0 = sum(); // } float[] const0 = new float[] { 0.5f, 0.5f, 0.5f, 1.0f }; int[] tmpInt = new int[1]; gl.glGenProgramsARB(1, tmpInt, 0); int fragProg = tmpInt[0]; gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); String program = "!!ARBfp1.0\n" + "PARAM const0 = program.env[0];\n" + "PARAM three = { 3, 3, 3, 1.0 };\n" + "TEMP texSamp0, texSamp1, texSamp2, texSamp3;\n" + "TEMP spare0, spare1;\n" + "\n" + "TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" + "TEX texSamp1, fragment.texcoord[1], texture[1], 2D;\n" + "TEX texSamp2, fragment.texcoord[2], texture[2], 2D;\n" + "TEX texSamp3, fragment.texcoord[3], texture[3], 2D;\n" + "ADD spare0, texSamp1, texSamp2;\n" + "MAD spare1, const0, const0, const0;\n" + "ADD spare0, texSamp3, spare0;\n" + "ADD spare0, spare1, spare0;\n" + "ADD spare1, three, const0;\n" + "MAD result.color, -spare1, texSamp0, spare0;\n" + // Faster version which hardcodes in value of const0: //"ADD spare0, texSamp1, texSamp2;\n" + //"ADD spare1, texSamp3, pointSevenFive;\n" + //"ADD spare0, spare0, spare1;\n" + //"MAD result.color, minusThreePointFive, texSamp0, spare0;\n" + // Straightforward port: //"SUB spare0, texSamp1, texSamp0;\n" + //"SUB spare1, texSamp2, texSamp0;\n" + //"ADD spare0, spare0, spare1;\n" + //"SUB spare1, texSamp3, texSamp0;\n" + //"ADD spare0, spare0, spare1;\n" + //"SUB spare1, const0, texSamp0;\n" + //"MAD spare0, const0, spare1, spare0;\n" + //"ADD result.color, spare0, const0;\n" + "\n" + "END\n"; loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program); gl.glNewList(displayListID, GL2.GL_COMPILE); gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 0, const0, 0); gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB); gl.glEndList(); } private void initNeighborForceCalcStep2(GL2 gl, int displayListID) { // 2nd step of force calc for render-to-texture // water simulation. // // Adds the 4th & final neighbor point to the // force calc.. // // Bias and scale the values so 0 force is 0.5, // full negative force is 0.0, and full pos is // 1.0 // // tex0 Center texel // tex1 2nd axis neighbor point // tex2 previous partial force amount // Result from t1 - t0 is added to this t2 // partial result & output // Original register combiner program: // // Stage 0 // last element of neighbor force // rgb // { // discard = -tex0; // discard = tex1; // spare0 = sum(); // } // Stage 1 // add with previous partial force amount // rgb // { // discard = spare0; // discard = tex2; // spare0 = sum(); // } int[] tmpInt = new int[1]; gl.glGenProgramsARB(1, tmpInt, 0); int fragProg = tmpInt[0]; gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); String program = "!!ARBfp1.0\n" + "PARAM const0 = program.env[0];\n" + "TEMP texSamp0, texSamp1, texSamp2;\n" + "TEMP spare0;\n" + "\n" + "TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" + "TEX texSamp1, fragment.texcoord[1], texture[1], 2D;\n" + "TEX texSamp2, fragment.texcoord[2], texture[2], 2D;\n" + "SUB spare0, texSamp1, texSamp0;\n" + "ADD result.color, spare0, texSamp2;\n" + "\n" + "END\n"; loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program); gl.glNewList(displayListID, GL2.GL_COMPILE); gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB); gl.glEndList(); } private void initApplyForce(GL2 gl, int displayListID) { // This shader samples t1, biases its value to a signed number, and applies this // value multiplied by a scale factor to the t0 sample. // // This is used to apply a "force" texture value to a "velocity" state texture // for nearest-neighbor height-based water simulations. The output pixel is // the new "velocity" value to replace the t0 sample in rendering to a new // texture which will replace the texture selected into t0. // // A nearly identical shader using a different scaling constant is used to // apply the "velocity" value to a "height" texture at each texel. // // t1 comes in the range [0,1] but needs to hold signed values, so a value of // 0.5 in t1 represents zero force. This is biased to a signed value in // computing the new velocity. // // tex0 = previous velocity // tex1 = force // // Bias the force so that 0.5 input = no change in t0 value // and 0.0 input means -0.5 * scale change in t0 value // // New velocity = force * scale + previous velocity // Original register combiner program: // // Stage 0 // rgb // { // discard = expand(tex1) * const0; // discard = expand(tex0); // spare0 = sum(); // scale_by_one_half(); // } // Stage 1 // rgb // { // discard = spare0; // discard = const1; // spare0 = sum(); // } float[] const0 = new float[] { 0.25f, 0.25f, 0.25f, 1.0f }; float[] const1 = new float[] { 0.5f, 0.5f, 0.5f, 1.0f }; int[] tmpInt = new int[1]; gl.glGenProgramsARB(1, tmpInt, 0); int fragProg = tmpInt[0]; gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); String program = "!!ARBfp1.0\n" + "PARAM const0 = program.env[0];\n" + "PARAM const1 = program.env[1];\n" + "PARAM one = { 1.0, 1.0, 1.0, 0.0 };\n" + "PARAM oneHalf = { 0.5, 0.5, 0.5, 1.0 };\n" + "PARAM two = { 2.0, 2.0, 2.0, 1.0 };\n" + "TEMP texSamp0, texSamp1;\n" + "TEMP spare0, spare1;\n" + "\n" + "TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" + "TEX texSamp1, fragment.texcoord[1], texture[1], 2D;\n" + "MAD spare0, two, texSamp1, -one;\n" + "MAD spare1, two, texSamp0, -one;\n" + "MAD spare0, spare0, const0, spare1;\n" + "MAD result.color, oneHalf, spare0, const1;\n" + "\n" + "END\n"; loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program); gl.glNewList(displayListID, GL2.GL_COMPILE); gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 0, const0, 0); gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 1, const1, 0); gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB); gl.glEndList(); } private void initApplyVelocity(GL2 gl, int displayListID) { // This shader samples t1, biases its value to a signed number, and applies this // value multiplied by a scale factor to the t0 sample. // // This is used to apply a "velocity" texture value to a "height" state texture // for nearest-neighbor height-based water simulations. The output pixel is // the new "height" value to replace the t0 sample in rendering to a new // texture which will replace the texture selected into t0. // // A nearly identical shader using a different scaling constant is used to // apply the "force" value to the "velocity" texture at each texel. // // t1 comes in the range [0,1] but needs to hold signed values, so a value of // 0.5 in t1 represents zero velocity. This is biased to a signed value in // computing the new position. // // tex0 = height field // tex1 = velocity // // Bias the force/velocity to a signed value so we can subtract from // the t0 position sample. // // New height = velocity * scale factor + old height // Original register combiner program: // // Stage 0 // rgb // { // discard = expand(tex1) * const0; // discard = expand(tex0); // spare0 = sum(); // scale_by_one_half(); // } // Stage 1 // rgb // { // discard = spare0; // discard = const0; // spare0 = sum(); // } // } float[] const0 = new float[] { 0.5f, 0.5f, 0.5f, 1.0f }; int[] tmpInt = new int[1]; gl.glGenProgramsARB(1, tmpInt, 0); int fragProg = tmpInt[0]; gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); String program = "!!ARBfp1.0\n" + "PARAM const0 = program.env[0];\n" + "PARAM one = { 1.0, 1.0, 1.0, 0.0 };\n" + "PARAM oneHalf = { 0.5, 0.5, 0.5, 1.0 };\n" + "PARAM two = { 2.0, 2.0, 2.0, 1.0 };\n" + "TEMP texSamp0, texSamp1;\n" + "TEMP spare0, spare1;\n" + "\n" + "TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" + "TEX texSamp1, fragment.texcoord[1], texture[1], 2D;\n" + "MAD spare0, two, texSamp1, -one;\n" + "MAD spare1, two, texSamp0, -one;\n" + "MAD spare0, spare0, const0, spare1;\n" + "MAD result.color, oneHalf, spare0, const0;\n" + "\n" + "END\n"; loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program); gl.glNewList(displayListID, GL2.GL_COMPILE); gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 0, const0, 0); gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB); gl.glEndList(); } private void initCreateNormalMap(GL2 gl, int displayListID) { // Neighbor-differencing for RGB normal map creation. Scale factors for s and t // axis components are set in program code. // This does a crude 1-s^2-t^2 calculation for the blue component in order to // approximately normalize the RGB normal map vector. For s^2+t^2 close to 1.0, // this is a close approximation to blue = sqrt(1 - s^2 - t^2) which would give a // normalized vector. // An additional pass with a dependent texture lookup (alpha-red or green-blue) // could be used to produce an exactly normalized normal. // colors from all 4 texture stages // tex0 = -s, 0 // tex1 = +s, 0 // tex2 = 0, +t // tex3 = 0, -t // Original register combiner program: // // Stage 0 // rgb // { // // (t0 - t1)*4 : 4 for higher scale // discard = -tex1; // discard = tex0; // spare0 = sum(); // scale_by_four(); // } // Stage 1 // rgb // { // // (t3 - t2)*4 : 4 for higher scale // discard = -tex2; // discard = tex3; // spare1 = sum(); // scale_by_four(); // } // Stage 2 // Define const0 in the third general combiner as RGBA = (scale, 0, 0, 0) // Where scale [0,1] is applied to reduce the magnitude // of the s axis component of the normal. // Define const1 in the third combiner similarly to affect the t axis component // define these by "ramboing" them in the C++ code that uses this combiner script. // Note: these variables have been renamed to "redMask" and "greenMask" in // the fragment program below. // rgb // { // // see comment about consts above! // // t0 = s result in red only // discard = spare0 * const0; // discard = spare1 * const1; // spare0 = sum(); // } // Stage 3 // rgb // { // tex1 = spare0 * spare0; // scale_by_two(); // } // Stage 4 // const0 = (1, 1, 0, 0); // rgb // { // spare1 = unsigned_invert(tex1) . const0; // scale_by_one_half(); // } // Stage 5 // const0 = (0.5, 0.5, 0, 0); // rgb // { // discard = spare0; // discard = const0; // spare0 = sum(); // } // Stage 6 // const0 = (0, 0, 1, 1); // rgb // { // discard = spare1 * const0; // discard = spare0; // spare0 = sum(); // } float[] const0 = new float[] { 0.5f, 0.5f, 0.5f, 1.0f }; int[] tmpInt = new int[1]; gl.glGenProgramsARB(1, tmpInt, 0); int fragProg = tmpInt[0]; gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); String program = "!!ARBfp1.0\n" + "PARAM redMask = program.env[0];\n" + "PARAM greenMask = program.env[1];\n" + "PARAM const0 = { 1.0, 1.0, 0.0, 0.0 };\n" + "PARAM const1 = { 0.5, 0.5, 0.0, 0.0 };\n" + "PARAM const2 = { 0.0, 0.0, 1.0, 1.0 };\n" + "PARAM one = { 1.0, 1.0, 1.0, 0.0 };\n" + "PARAM oneHalf = { 0.5, 0.5, 0.5, 1.0 };\n" + "PARAM two = { 2.0, 2.0, 2.0, 1.0 };\n" + "PARAM four = { 4.0, 4.0, 4.0, 1.0 };\n" + "TEMP texSamp0, texSamp1, texSamp2, texSamp3;\n" + "TEMP spare0, spare1, spare2;\n" + "\n" + "TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" + "TEX texSamp1, fragment.texcoord[1], texture[1], 2D;\n" + "TEX texSamp2, fragment.texcoord[2], texture[2], 2D;\n" + "TEX texSamp3, fragment.texcoord[3], texture[3], 2D;\n" + "SUB spare0, texSamp0, texSamp1;\n" + "MUL spare0, spare0, four;\n" + "SUB spare1, texSamp3, texSamp2;\n" + "MUL spare1, spare1, four;\n" + "MUL spare0, spare0, redMask;\n" + "MAD spare0, greenMask, spare1, spare0;\n" + "MUL_SAT spare2, spare0, spare0;\n" + "SUB spare2, one, spare2;\n" + "DP3 spare1, spare2, const0;\n" + "ADD spare0, spare0, const1;\n" + "MAD result.color, const2, spare1, spare0;\n" + "\n" + "END\n"; loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program); gl.glNewList(displayListID, GL2.GL_COMPILE); gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB); gl.glEndList(); } private void initDotProductReflect(GL2 gl, int displayListID) { // Pseudocode for this operation, derived from the NVidia // texture_shader.txt documentation at // http://oss.sgi.com/projects/ogl-sample/registry/NV/texture_shader.txt // TEX texSamp0, fragment.texcoord[0], texture[0], 2D; // MAD texSamp0, two, texSamp0, minusOne; // TEMP dotPP = texSamp0 . texcoord[1]; // TEMP dotP = texSamp0 . texcoord[2]; // TEMP dotC = texSamp0 . texcoord[3]; // TEMP R, N, E; // N = [dotPP, dotP, dotC]; // ooNLength = N dot N; // RCP ooNLength, ooNLength; // E = [texcoord[1].w, texcoord[2].w, texcoord[3].w]; // nDotE = N dot E; // MUL R, nDotE, N; // MUL R, R, two; // MUL R, R, ooNLength; // SUB R, R, E; // TEX result.color, R, texture[3], CUBE; // This fragment program is pretty length-sensitive; making it too // big causes the frame rate to be cut in half on my machine // (Quadro FX Go700) due to sync-to-vertical-refresh. The program // below is more optimized in its use of temporaries. Some of the // scaling operations on the first component of the normal vector // (before subtracting off the E vector) don't appear to make much // of a visual difference so they are skipped as well. int[] tmpInt = new int[1]; gl.glGenProgramsARB(1, tmpInt, 0); int fragProg = tmpInt[0]; gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); String program = "!!ARBfp1.0\n" + "PARAM minusOne = { -1.0, -1.0, -1.0, 0.0 };\n" + "PARAM two = { 2.0, 2.0, 2.0, 0.0 };\n" + "TEMP texSamp0, R, N, E;\n" + "\n" + "TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" + "MAD texSamp0, two, texSamp0, minusOne;\n" + "DP3 N.x, texSamp0, fragment.texcoord[1];\n" + "DP3 N.y, texSamp0, fragment.texcoord[2];\n" + "DP3 N.z, texSamp0, fragment.texcoord[3];\n" + "MOV E.x, fragment.texcoord[1].w;\n" + "MOV E.y, fragment.texcoord[2].w;\n" + "MOV E.z, fragment.texcoord[3].w;\n" + "MUL N, N, two;\n" + "SUB R, N, E;\n" + "TEX result.color, R, texture[3], CUBE;\n" + "\n" + "END"; loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program); gl.glNewList(displayListID, GL2.GL_COMPILE); gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB); gl.glEndList(); } private void loadProgram(GL2 gl, int target, String programBuffer) { gl.glProgramStringARB(target, GL2.GL_PROGRAM_FORMAT_ASCII_ARB, programBuffer.length(), programBuffer); int[] errPos = new int[1]; gl.glGetIntegerv(GL2.GL_PROGRAM_ERROR_POSITION_ARB, errPos, 0); if (errPos[0] >= 0) { String kind = "Program"; if (target == GL2.GL_VERTEX_PROGRAM_ARB) { kind = "Vertex program"; } else if (target == GL2.GL_FRAGMENT_PROGRAM_ARB) { kind = "Fragment program"; } System.out.println(kind + " failed to load:"); String errMsg = gl.glGetString(GL2.GL_PROGRAM_ERROR_STRING_ARB); if (errMsg == null) { System.out.println("[No error message available]"); } else { System.out.println("Error message: \"" + errMsg + "\""); } System.out.println("Error occurred at position " + errPos[0] + " in program:"); int endPos = errPos[0]; while (endPos < programBuffer.length() && programBuffer.charAt(endPos) != '\n') { ++endPos; } System.out.println(programBuffer.substring(errPos[0], endPos)); throw new GLException("Error loading " + kind); } else { if (target == GL2.GL_FRAGMENT_PROGRAM_ARB) { int[] isNative = new int[1]; gl.glGetProgramivARB(GL2.GL_FRAGMENT_PROGRAM_ARB, GL2.GL_PROGRAM_UNDER_NATIVE_LIMITS_ARB, isNative, 0); if (isNative[0] != 1) { System.out.println("WARNING: fragment program is over native resource limits"); Thread.dumpStack(); } } } } }