/* Copyright (C) 1997-2001 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // Created on 02.02.2004 by RST. // $Id: TestMD4.java,v 1.1 2004-07-07 19:59:57 hzi Exp $ package jake2.qcommon; import jake2.*; import jake2.client.*; import jake2.game.*; import jake2.render.*; import jake2.server.*; import jake2.util.Lib; // // // // //Network Working Group R. Rivest //Request for Comments: 1320 MIT Laboratory for Computer Science //Obsoletes: RFC 1186 and RSA Data Security, Inc. // April 1992 // // // The MD4 Message-Digest Algorithm // //Status of thie Memo // // This memo provides information for the Internet community. It does // not specify an Internet standard. Distribution of this memo is // unlimited. // //Acknowlegements // // We would like to thank Don Coppersmith, Burt Kaliski, Ralph Merkle, // and Noam Nisan for numerous helpful comments and suggestions. // //Table of Contents // // 1. Executive Summary 1 // 2. Terminology and Notation 2 // 3. MD4 Algorithm Description 2 // 4. Summary 6 // References 6 // APPENDIX A - Reference Implementation 6 // Security Considerations 20 // Author's Address 20 // //1. Executive Summary // // This document describes the MD4 message-digest algorithm [1]. The // algorithm takes as input a message of arbitrary length and produces // as output a 128-bit "fingerprint" or "message digest" of the input. // It is conjectured that it is computationally infeasible to produce // two messages having the same message digest, or to produce any // message having a given prespecified target message digest. The MD4 // algorithm is intended for digital signature applications, where a // large file must be "compressed" in a secure manner before being // encrypted with a private (secret) key under a public-key cryptosystem // such as RSA. // // The MD4 algorithm is designed to be quite fast on 32-bit machines. In // addition, the MD4 algorithm does not require any large substitution // tables; the algorithm can be coded quite compactly. // // // // // //Rivest [Page 1] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // // The MD4 algorithm is being placed in the public domain for review and // possible adoption as a standard. // // This document replaces the October 1990 RFC 1186 [2]. The main // difference is that the reference implementation of MD4 in the // appendix is more portable. // // For OSI-based applications, MD4's object identifier is // // md4 OBJECT IDENTIFIER ::= // {iso(1) member-body(2) US(840) rsadsi(113549) digestAlgorithm(2) 4} // // In the X.509 type AlgorithmIdentifier [3], the parameters for MD4 // should have type NULL. // //2. Terminology and Notation // // In this document a "word" is a 32-bit quantity and a "byte" is an // eight-bit quantity. A sequence of bits can be interpreted in a // natural manner as a sequence of bytes, where each consecutive group // of eight bits is interpreted as a byte with the high-order (most // significant) bit of each byte listed first. Similarly, a sequence of // bytes can be interpreted as a sequence of 32-bit words, where each // consecutive group of four bytes is interpreted as a word with the // low-order (least significant) byte given first. // // Let x_i denote "x sub i". If the subscript is an expression, we // surround it in braces, as in x_{i+1}. Similarly, we use ^ for // superscripts (exponentiation), so that x^i denotes x to the i-th // power. // // Let the symbol "+" denote addition of words (i.e., modulo-2^32 // addition). Let X <<< s denote the 32-bit value obtained by circularly // shifting (rotating) X left by s bit positions. Let not(X) denote the // bit-wise complement of X, and let X v Y denote the bit-wise OR of X // and Y. Let X xor Y denote the bit-wise XOR of X and Y, and let XY // denote the bit-wise AND of X and Y. // //3. MD4 Algorithm Description // // We begin by supposing that we have a b-bit message as input, and that // we wish to find its message digest. Here b is an arbitrary // nonnegative integer; b may be zero, it need not be a multiple of // eight, and it may be arbitrarily large. We imagine the bits of the // message written down as follows: // // m_0 m_1 ... m_{b-1} // // // // //Rivest [Page 2] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // // The following five steps are performed to compute the message digest // of the message. // //3.1 Step 1. Append Padding Bits // // The message is "padded" (extended) so that its length (in bits) is // congruent to 448, modulo 512. That is, the message is extended so // that it is just 64 bits shy of being a multiple of 512 bits long. // Padding is always performed, even if the length of the message is // already congruent to 448, modulo 512. // // Padding is performed as follows: a single "1" bit is appended to the // message, and then "0" bits are appended so that the length in bits of // the padded message becomes congruent to 448, modulo 512. In all, at // least one bit and at most 512 bits are appended. // //3.2 Step 2. Append Length // // A 64-bit representation of b (the length of the message before the // padding bits were added) is appended to the result of the previous // step. In the unlikely event that b is greater than 2^64, then only // the low-order 64 bits of b are used. (These bits are appended as two // 32-bit words and appended low-order word first in accordance with the // previous conventions.) // // At this point the resulting message (after padding with bits and with // b) has a length that is an exact multiple of 512 bits. Equivalently, // this message has a length that is an exact multiple of 16 (32-bit) // words. Let M[0 ... N-1] denote the words of the resulting message, // where N is a multiple of 16. // //3.3 Step 3. Initialize MD Buffer // // A four-word buffer (A,B,C,D) is used to compute the message digest. // Here each of A, B, C, D is a 32-bit register. These registers are // initialized to the following values in hexadecimal, low-order bytes // first): // // word A: 01 23 45 67 // word B: 89 ab cd ef // word C: fe dc ba 98 // word D: 76 54 32 10 // // // // // // // // // //Rivest [Page 3] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // //3.4 Step 4. Process Message in 16-Word Blocks // // We first define three auxiliary functions that each take as input // three 32-bit words and produce as output one 32-bit word. // // F(X,Y,Z) = XY v not(X) Z // G(X,Y,Z) = XY v XZ v YZ // H(X,Y,Z) = X xor Y xor Z // // In each bit position F acts as a conditional: if X then Y else Z. // The function F could have been defined using + instead of v since XY // and not(X)Z will never have "1" bits in the same bit position.) In // each bit position G acts as a majority function: if at least two of // X, Y, Z are on, then G has a "1" bit in that bit position, else G has // a "0" bit. It is interesting to note that if the bits of X, Y, and Z // are independent and unbiased, the each bit of f(X,Y,Z) will be // independent and unbiased, and similarly each bit of g(X,Y,Z) will be // independent and unbiased. The function H is the bit-wise XOR or // parity" function; it has properties similar to those of F and G. // // Do the following: // // Process each 16-word block. */ // For i = 0 to N/16-1 do // // /* Copy block i into X. */ // For j = 0 to 15 do // Set X[j] to M[i*16+j]. // end /* of loop on j */ // // /* Save A as AA, B as BB, C as CC, and D as DD. */ // AA = A // BB = B // CC = C // DD = D // // /* Round 1. */ // /* Let [abcd k s] denote the operation // a = (a + F(b,c,d) + X[k]) <<< s. */ // /* Do the following 16 operations. */ // [ABCD 0 3] [DABC 1 7] [CDAB 2 11] [BCDA 3 19] // [ABCD 4 3] [DABC 5 7] [CDAB 6 11] [BCDA 7 19] // [ABCD 8 3] [DABC 9 7] [CDAB 10 11] [BCDA 11 19] // [ABCD 12 3] [DABC 13 7] [CDAB 14 11] [BCDA 15 19] // // /* Round 2. */ // /* Let [abcd k s] denote the operation // a = (a + G(b,c,d) + X[k] + 5A827999) <<< s. */ // // // //Rivest [Page 4] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // // /* Do the following 16 operations. */ // [ABCD 0 3] [DABC 4 5] [CDAB 8 9] [BCDA 12 13] // [ABCD 1 3] [DABC 5 5] [CDAB 9 9] [BCDA 13 13] // [ABCD 2 3] [DABC 6 5] [CDAB 10 9] [BCDA 14 13] // [ABCD 3 3] [DABC 7 5] [CDAB 11 9] [BCDA 15 13] // // /* Round 3. */ // /* Let [abcd k s] denote the operation // a = (a + H(b,c,d) + X[k] + 6ED9EBA1) <<< s. */ // /* Do the following 16 operations. */ // [ABCD 0 3] [DABC 8 9] [CDAB 4 11] [BCDA 12 15] // [ABCD 2 3] [DABC 10 9] [CDAB 6 11] [BCDA 14 15] // [ABCD 1 3] [DABC 9 9] [CDAB 5 11] [BCDA 13 15] // [ABCD 3 3] [DABC 11 9] [CDAB 7 11] [BCDA 15 15] // // /* Then perform the following additions. (That is, increment each // of the four registers by the value it had before this block // was started.) */ // A = A + AA // B = B + BB // C = C + CC // D = D + DD // // end /* of loop on i */ // // Note. The value 5A..99 is a hexadecimal 32-bit constant, written with // the high-order digit first. This constant represents the square root // of 2. The octal value of this constant is 013240474631. // // The value 6E..A1 is a hexadecimal 32-bit constant, written with the // high-order digit first. This constant represents the square root of // 3. The octal value of this constant is 015666365641. // // See Knuth, The Art of Programming, Volume 2 (Seminumerical // Algorithms), Second Edition (1981), Addison-Wesley. Table 2, page // 660. // //3.5 Step 5. Output // // The message digest produced as output is A, B, C, D. That is, we // begin with the low-order byte of A, and end with the high-order byte // of D. // // This completes the description of MD4. A reference implementation in // C is given in the appendix. // // // // // // //Rivest [Page 5] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // //4. Summary // // The MD4 message-digest algorithm is simple to implement, and provides // a "fingerprint" or message digest of a message of arbitrary length. // It is conjectured that the difficulty of coming up with two messages // having the same message digest is on the order of 2^64 operations, // and that the difficulty of coming up with any message having a given // message digest is on the order of 2^128 operations. The MD4 algorithm // has been carefully scrutinized for weaknesses. It is, however, a // relatively new algorithm and further security analysis is of course // justified, as is the case with any new proposal of this sort. // //References // // [1] Rivest, R., "The MD4 message digest algorithm", in A.J. Menezes // and S.A. Vanstone, editors, Advances in Cryptology - CRYPTO '90 // Proceedings, pages 303-311, Springer-Verlag, 1991. // // [2] Rivest, R., "The MD4 Message Digest Algorithm", RFC 1186, MIT, // October 1990. // // [3] CCITT Recommendation X.509 (1988), "The Directory - // Authentication Framework". // // [4] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, MIT and // RSA Data Security, Inc, April 1992. // //APPENDIX A - Reference Implementation // // This appendix contains the following files: // // global.h -- global header file // // md4.h -- header file for MD4 // // md4c.c -- source code for MD4 // // mddriver.c -- test driver for MD2, MD4 and MD5 // // The driver compiles for MD5 by default but can compile for MD2 or MD4 // if the symbol MD is defined on the C compiler command line as 2 or 4. // // The implementation is portable and should work on many different // plaforms. However, it is not difficult to optimize the implementation // on particular platforms, an exercise left to the reader. For example, // on "little-endian" platforms where the lowest-addressed byte in a 32- // bit word is the least significant and there are no alignment // restrictions, the call to Decode in MD4Transform can be replaced with // // // //Rivest [Page 6] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // // a typecast. // //A.1 global.h // ///* GLOBAL.H - RSAREF types and constants // */ // ///* PROTOTYPES should be set to one if and only if the compiler supports // function argument prototyping. // The following makes PROTOTYPES default to 0 if it has not already // been defined with C compiler flags. // */ //#ifndef PROTOTYPES //#define PROTOTYPES 0 //#endif // ///* POINTER defines a generic pointer type */ //typedef unsigned char *POINTER; // ///* UINT2 defines a two byte word */ //typedef unsigned short int UINT2; // ///* UINT4 defines a four byte word */ //typedef unsigned long int UINT4; // ///* PROTO_LIST is defined depending on how PROTOTYPES is defined above. // If using PROTOTYPES, then PROTO_LIST returns the list, otherwise it // returns an empty list. // */ // //#if PROTOTYPES //#define PROTO_LIST(list) list //#else //#define PROTO_LIST(list) () //#endif // //A.2 md4.h // ///* MD4.H - header file for MD4C.C // */ // ///* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All // rights reserved. // // License to copy and use this software is granted provided that it // is identified as the "RSA Data Security, Inc. MD4 Message-Digest // Algorithm" in all material mentioning or referencing this software // or this function. // // // //Rivest [Page 7] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // // License is also granted to make and use derivative works provided // that such works are identified as "derived from the RSA Data // Security, Inc. MD4 Message-Digest Algorithm" in all material // mentioning or referencing the derived work. // // RSA Data Security, Inc. makes no representations concerning either // the merchantability of this software or the suitability of this // software for any particular purpose. It is provided "as is" // without express or implied warranty of any kind. // // These notices must be retained in any copies of any part of this // documentation and/or software. // */ // ///* MD4 context. */ //typedef struct { // UINT4 state[4]; /* state (ABCD) */ // UINT4 count[2]; /* number of bits, modulo 2^64 (lsb first) */ // unsigned char buffer[64]; /* input buffer */ //} MD4_CTX; // //void MD4Init PROTO_LIST ((MD4_CTX *)); //void MD4Update PROTO_LIST // ((MD4_CTX *, unsigned char *, unsigned int)); //void MD4Final PROTO_LIST ((unsigned char [16], MD4_CTX *)); // //A.3 md4c.c // ///* MD4C.C - RSA Data Security, Inc., MD4 message-digest algorithm // */ // ///* Copyright (C) 1990-2, RSA Data Security, Inc. All rights reserved. // // License to copy and use this software is granted provided that it // is identified as the "RSA Data Security, Inc. MD4 Message-Digest // Algorithm" in all material mentioning or referencing this software // or this function. // // License is also granted to make and use derivative works provided // that such works are identified as "derived from the RSA Data // Security, Inc. MD4 Message-Digest Algorithm" in all material // mentioning or referencing the derived work. // // RSA Data Security, Inc. makes no representations concerning either // the merchantability of this software or the suitability of this // software for any particular purpose. It is provided "as is" // without express or implied warranty of any kind. // // // // //Rivest [Page 8] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // // These notices must be retained in any copies of any part of this // documentation and/or software. // */ // //#include "global.h" //#include "md4.h" // ///* Constants for MD4Transform routine. // */ //#define S11 3 //#define S12 7 //#define S13 11 //#define S14 19 //#define S21 3 //#define S22 5 //#define S23 9 //#define S24 13 //#define S31 3 //#define S32 9 //#define S33 11 //#define S34 15 // //static void MD4Transform PROTO_LIST ((UINT4 [4], unsigned char [64])); //static void Encode PROTO_LIST // ((unsigned char *, UINT4 *, unsigned int)); //static void Decode PROTO_LIST // ((UINT4 *, unsigned char *, unsigned int)); //static void MD4_memcpy PROTO_LIST ((POINTER, POINTER, unsigned int)); //static void MD4_memset PROTO_LIST ((POINTER, int, unsigned int)); // //static unsigned char PADDING[64] = { // 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 //}; // ///* F, G and H are basic MD4 functions. // */ //#define F(x, y, z) (((x) & (y)) | ((~x) & (z))) //#define G(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z))) //#define H(x, y, z) ((x) ^ (y) ^ (z)) // ///* ROTATE_LEFT rotates x left n bits. // */ //#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n)))) // ///* FF, GG and HH are transformations for rounds 1, 2 and 3 */ ///* Rotation is separate from addition to prevent recomputation */ // // // //Rivest [Page 9] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // //#define FF(a, b, c, d, x, s) { \ // (a) += F ((b), (c), (d)) + (x); \ // (a) = ROTATE_LEFT ((a), (s)); \ // } //#define GG(a, b, c, d, x, s) { \ // (a) += G ((b), (c), (d)) + (x) + (UINT4)0x5a827999; \ // (a) = ROTATE_LEFT ((a), (s)); \ // } //#define HH(a, b, c, d, x, s) { \ // (a) += H ((b), (c), (d)) + (x) + (UINT4)0x6ed9eba1; \ // (a) = ROTATE_LEFT ((a), (s)); \ // } // ///* MD4 initialization. Begins an MD4 operation, writing a new context. // */ //void MD4Init (context) //MD4_CTX *context; /* context */ //{ // context->count[0] = context->count[1] = 0; // // /* Load magic initialization constants. // */ // context->state[0] = 0x67452301; // context->state[1] = 0xefcdab89; // context->state[2] = 0x98badcfe; // context->state[3] = 0x10325476; //} // ///* MD4 block update operation. Continues an MD4 message-digest // operation, processing another message block, and updating the // context. // */ //void MD4Update (context, input, inputLen) //MD4_CTX *context; /* context */ //unsigned char *input; /* input block */ //unsigned int inputLen; /* length of input block */ //{ // unsigned int i, index, partLen; // // /* Compute number of bytes mod 64 */ // index = (unsigned int)((context->count[0] >> 3) & 0x3F); // /* Update number of bits */ // if ((context->count[0] += ((UINT4)inputLen << 3)) // < ((UINT4)inputLen << 3)) // context->count[1]++; // context->count[1] += ((UINT4)inputLen >> 29); // // partLen = 64 - index; // // // //Rivest [Page 10] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // // /* Transform as many times as possible. // */ // if (inputLen >= partLen) { // MD4_memcpy // ((POINTER)&context->buffer[index], (POINTER)input, partLen); // MD4Transform (context->state, context->buffer); // // for (i = partLen; i + 63 < inputLen; i += 64) // MD4Transform (context->state, &input[i]); // // index = 0; // } // else // i = 0; // // /* Buffer remaining input */ // MD4_memcpy // ((POINTER)&context->buffer[index], (POINTER)&input[i], // inputLen-i); //} // ///* MD4 finalization. Ends an MD4 message-digest operation, writing the // the message digest and zeroizing the context. // */ //void MD4Final (digest, context) //unsigned char digest[16]; /* message digest */ //MD4_CTX *context; /* context */ //{ // unsigned char bits[8]; // unsigned int index, padLen; // // /* Save number of bits */ // Encode (bits, context->count, 8); // // /* Pad out to 56 mod 64. // */ // index = (unsigned int)((context->count[0] >> 3) & 0x3f); // padLen = (index < 56) ? (56 - index) : (120 - index); // MD4Update (context, PADDING, padLen); // // /* Append length (before padding) */ // MD4Update (context, bits, 8); // /* Store state in digest */ // Encode (digest, context->state, 16); // // /* Zeroize sensitive information. // */ // MD4_memset ((POINTER)context, 0, sizeof (*context)); // // // //Rivest [Page 11] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // //} // ///* MD4 basic transformation. Transforms state based on block. // */ //static void MD4Transform (state, block) //UINT4 state[4]; //unsigned char block[64]; //{ // UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16]; // // Decode (x, block, 64); // // /* Round 1 */ // FF (a, b, c, d, x[ 0], S11); /* 1 */ // FF (d, a, b, c, x[ 1], S12); /* 2 */ // FF (c, d, a, b, x[ 2], S13); /* 3 */ // FF (b, c, d, a, x[ 3], S14); /* 4 */ // FF (a, b, c, d, x[ 4], S11); /* 5 */ // FF (d, a, b, c, x[ 5], S12); /* 6 */ // FF (c, d, a, b, x[ 6], S13); /* 7 */ // FF (b, c, d, a, x[ 7], S14); /* 8 */ // FF (a, b, c, d, x[ 8], S11); /* 9 */ // FF (d, a, b, c, x[ 9], S12); /* 10 */ // FF (c, d, a, b, x[10], S13); /* 11 */ // FF (b, c, d, a, x[11], S14); /* 12 */ // FF (a, b, c, d, x[12], S11); /* 13 */ // FF (d, a, b, c, x[13], S12); /* 14 */ // FF (c, d, a, b, x[14], S13); /* 15 */ // FF (b, c, d, a, x[15], S14); /* 16 */ // // /* Round 2 */ // GG (a, b, c, d, x[ 0], S21); /* 17 */ // GG (d, a, b, c, x[ 4], S22); /* 18 */ // GG (c, d, a, b, x[ 8], S23); /* 19 */ // GG (b, c, d, a, x[12], S24); /* 20 */ // GG (a, b, c, d, x[ 1], S21); /* 21 */ // GG (d, a, b, c, x[ 5], S22); /* 22 */ // GG (c, d, a, b, x[ 9], S23); /* 23 */ // GG (b, c, d, a, x[13], S24); /* 24 */ // GG (a, b, c, d, x[ 2], S21); /* 25 */ // GG (d, a, b, c, x[ 6], S22); /* 26 */ // GG (c, d, a, b, x[10], S23); /* 27 */ // GG (b, c, d, a, x[14], S24); /* 28 */ // GG (a, b, c, d, x[ 3], S21); /* 29 */ // GG (d, a, b, c, x[ 7], S22); /* 30 */ // GG (c, d, a, b, x[11], S23); /* 31 */ // GG (b, c, d, a, x[15], S24); /* 32 */ // // // // //Rivest [Page 12] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // // /* Round 3 */ // HH (a, b, c, d, x[ 0], S31); /* 33 */ // HH (d, a, b, c, x[ 8], S32); /* 34 */ // HH (c, d, a, b, x[ 4], S33); /* 35 */ // HH (b, c, d, a, x[12], S34); /* 36 */ // HH (a, b, c, d, x[ 2], S31); /* 37 */ // HH (d, a, b, c, x[10], S32); /* 38 */ // HH (c, d, a, b, x[ 6], S33); /* 39 */ // HH (b, c, d, a, x[14], S34); /* 40 */ // HH (a, b, c, d, x[ 1], S31); /* 41 */ // HH (d, a, b, c, x[ 9], S32); /* 42 */ // HH (c, d, a, b, x[ 5], S33); /* 43 */ // HH (b, c, d, a, x[13], S34); /* 44 */ // HH (a, b, c, d, x[ 3], S31); /* 45 */ // HH (d, a, b, c, x[11], S32); /* 46 */ // HH (c, d, a, b, x[ 7], S33); /* 47 */ // HH (b, c, d, a, x[15], S34); /* 48 */ // // state[0] += a; // state[1] += b; // state[2] += c; // state[3] += d; // // /* Zeroize sensitive information. // */ // MD4_memset ((POINTER)x, 0, sizeof (x)); //} // ///* Encodes input (UINT4) into output (unsigned char). Assumes len is // a multiple of 4. // */ //static void Encode (output, input, len) //unsigned char *output; //UINT4 *input; //unsigned int len; //{ // unsigned int i, j; // // for (i = 0, j = 0; j < len; i++, j += 4) { // output[j] = (unsigned char)(input[i] & 0xff); // output[j+1] = (unsigned char)((input[i] >> 8) & 0xff); // output[j+2] = (unsigned char)((input[i] >> 16) & 0xff); // output[j+3] = (unsigned char)((input[i] >> 24) & 0xff); // } //} // ///* Decodes input (unsigned char) into output (UINT4). Assumes len is // a multiple of 4. // // // //Rivest [Page 13] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // // */ //static void Decode (output, input, len) // //UINT4 *output; //unsigned char *input; //unsigned int len; //{ // unsigned int i, j; // // for (i = 0, j = 0; j < len; i++, j += 4) // output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) | // (((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24); //} // ///* Note: Replace "for loop" with standard memcpy if possible. // */ //static void MD4_memcpy (output, input, len) //POINTER output; //POINTER input; //unsigned int len; //{ // unsigned int i; // // for (i = 0; i < len; i++) // output[i] = input[i]; //} // ///* Note: Replace "for loop" with standard memset if possible. // */ //static void MD4_memset (output, value, len) //POINTER output; //int value; //unsigned int len; //{ // unsigned int i; // // for (i = 0; i < len; i++) // ((char *)output)[i] = (char)value; //} // //A.4 mddriver.c // ///* MDDRIVER.C - test driver for MD2, MD4 and MD5 // */ // ///* Copyright (C) 1990-2, RSA Data Security, Inc. Created 1990. All // rights reserved. // // // // //Rivest [Page 14] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // // RSA Data Security, Inc. makes no representations concerning either // the merchantability of this software or the suitability of this // software for any particular purpose. It is provided "as is" // without express or implied warranty of any kind. // // These notices must be retained in any copies of any part of this // documentation and/or software. // // */ // ///* The following makes MD default to MD5 if it has not already been // defined with C compiler flags. // */ //#ifndef MD //#define MD MD5 //#endif // //#include //#include //#include //#include "global.h" //#if MD == 2 //#include "md2.h" //#endif //#if MD == 4 //#include "md4.h" //#endif //#if MD == 5 //#include "md5.h" //#endif // ///* Length of test block, number of test blocks. // */ //#define TEST_BLOCK_LEN 1000 //#define TEST_BLOCK_COUNT 1000 // //static void MDString PROTO_LIST ((char *)); //static void MDTimeTrial PROTO_LIST ((void)); //static void MDTestSuite PROTO_LIST ((void)); //static void MDFile PROTO_LIST ((char *)); //static void MDFilter PROTO_LIST ((void)); //static void MDPrint PROTO_LIST ((unsigned char [16])); // //#if MD == 2 //#define MD_CTX MD2_CTX //#define MDInit MD2Init //#define MDUpdate MD2Update //#define MDFinal MD2Final // // // //Rivest [Page 15] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // //#endif //#if MD == 4 //#define MD_CTX MD4_CTX //#define MDInit MD4Init //#define MDUpdate MD4Update //#define MDFinal MD4Final //#endif //#if MD == 5 //#define MD_CTX MD5_CTX //#define MDInit MD5Init //#define MDUpdate MD5Update //#define MDFinal MD5Final //#endif // ///* Main driver. // // Arguments (may be any combination): // -sstring - digests string // -t - runs time trial // -x - runs test script // filename - digests file // (none) - digests standard input // */ //int main (argc, argv) //int argc; //char *argv[]; //{ // int i; // // if (argc > 1) // for (i = 1; i < argc; i++) // if (argv[i][0] == '-' && argv[i][1] == 's') // MDString (argv[i] + 2); // else if (strcmp (argv[i], "-t") == 0) // MDTimeTrial (); // else if (strcmp (argv[i], "-x") == 0) // MDTestSuite (); // else // MDFile (argv[i]); // else // MDFilter (); // // return (0); //} // ///* Digests a string and prints the result. // */ //static void MDString (string) // // // //Rivest [Page 16] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // //char *string; //{ // MD_CTX context; // unsigned char digest[16]; // unsigned int len = strlen (string); // // MDInit (&context); // MDUpdate (&context, string, len); // MDFinal (digest, &context); // // printf ("MD%d (\"%s\") = ", MD, string); // MDPrint (digest); // printf ("\n"); //} // ///* Measures the time to digest TEST_BLOCK_COUNT TEST_BLOCK_LEN-byte // blocks. // */ //static void MDTimeTrial () //{ // MD_CTX context; // time_t endTime, startTime; // unsigned char block[TEST_BLOCK_LEN], digest[16]; // unsigned int i; // // printf // ("MD%d time trial. Digesting %d %d-byte blocks ...", MD, // TEST_BLOCK_LEN, TEST_BLOCK_COUNT); // // /* Initialize block */ // for (i = 0; i < TEST_BLOCK_LEN; i++) // block[i] = (unsigned char)(i & 0xff); // // /* Start timer */ // time (&startTime); // // /* Digest blocks */ // MDInit (&context); // for (i = 0; i < TEST_BLOCK_COUNT; i++) // MDUpdate (&context, block, TEST_BLOCK_LEN); // MDFinal (digest, &context); // // /* Stop timer */ // time (&endTime); // // printf (" done\n"); // printf ("Digest = "); // MDPrint (digest); // // // //Rivest [Page 17] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // // printf ("\nTime = %ld seconds\n", (long)(endTime-startTime)); // printf // ("Speed = %ld bytes/second\n", // (long)TEST_BLOCK_LEN * (long)TEST_BLOCK_COUNT/(endTime-startTime)); //} // ///* Digests a reference suite of strings and prints the results. // */ //static void MDTestSuite () //{ // printf ("MD%d test suite:\n", MD); // // MDString (""); // MDString ("a"); // MDString ("abc"); // MDString ("message digest"); // MDString ("abcdefghijklmnopqrstuvwxyz"); // MDString // ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"); // MDString // // ("1234567890123456789012345678901234567890\ //1234567890123456789012345678901234567890"); //} // ///* Digests a file and prints the result. // */ //static void MDFile (filename) //char *filename; //{ // FILE *file; // MD_CTX context; // int len; // unsigned char buffer[1024], digest[16]; // // if ((file = fopen (filename, "r")) == NULL) // printf ("%s can't be opened\n", filename); // // else { // MDInit (&context); // while (len = fread (buffer, 1, 1024, file)) // MDUpdate (&context, buffer, len); // MDFinal (digest, &context); // // fclose (file); // // printf ("MD%d (%s) = ", MD, filename); // MDPrint (digest); // // // //Rivest [Page 18] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // // printf ("\n"); // } //} // ///* Digests the standard input and prints the result. // */ //static void MDFilter () //{ // MD_CTX context; // int len; // unsigned char buffer[16], digest[16]; // // MDInit (&context); // while (len = fread (buffer, 1, 16, stdin)) // MDUpdate (&context, buffer, len); // MDFinal (digest, &context); // // MDPrint (digest); // printf ("\n"); //} // ///* Prints a message digest in hexadecimal. // */ //static void MDPrint (digest) //unsigned char digest[16]; // //{ // unsigned int i; // // for (i = 0; i < 16; i++) // printf ("%02x", digest[i]); //} // //A.5 Test suite // // The MD4 test suite (driver option "-x") should print the following // results: // //MD4 test suite: //MD4 ("") = 31d6cfe0d16ae931b73c59d7e0c089c0 //MD4 ("a") = bde52cb31de33e46245e05fbdbd6fb24 //MD4 ("abc") = a448017aaf21d8525fc10ae87aa6729d //MD4 ("message digest") = d9130a8164549fe818874806e1c7014b //MD4 ("abcdefghijklmnopqrstuvwxyz") = d79e1c308aa5bbcdeea8ed63df412da9 //MD4 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789") = //043f8582f241db351ce627e153e7f0e4 //MD4 ("123456789012345678901234567890123456789012345678901234567890123456 //78901234567890") = e33b4ddc9c38f2199c3e7b164fcc0536 // // // //Rivest [Page 19] // //RFC 1320 MD4 Message-Digest Algorithm April 1992 // // //Security Considerations // // The level of security discussed in this memo is considered to be // sufficient for implementing moderate security hybrid digital- // signature schemes based on MD4 and a public-key cryptosystem. We do // not know of any reason that MD4 would not be sufficient for // implementing very high security digital-signature schemes, but // because MD4 was designed to be exceptionally fast, it is "at the // edge" in terms of risking successful cryptanalytic attack. After // further critical review, it may be appropriate to consider MD4 for // very high security applications. For very high security applications // before the completion of that review, the MD5 algorithm [4] is // recommended. // //Author's Address // // Ronald L. Rivest // Massachusetts Institute of Technology // Laboratory for Computer Science // NE43-324 // 545 Technology Square // Cambridge, MA 02139-1986 // // Phone: (617) 253-5880 // EMail: rivest@theory.lcs.mit.edu // public class TestMD4 { public static void main(String args[]) { test(""); test("a"); test("abc"); test("abcdefghijklmnopqrstuvwxyz"); test("hi"); } public static void test(String s) { MD4 md4 = new MD4(); md4.engineUpdate(s.getBytes(), 0, s.length()); System.out.println("\"" + s + "\""); System.out.print(Lib.hexDump(md4.engineDigest(), 16, false)); } }