aboutsummaryrefslogtreecommitdiffstats
path: root/src/libnoiseforjava/module/Simplex.java
blob: 82d58c6b6586dda4ca10dbbe19c66db1378488e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
package libnoiseforjava.module;

/**
 * Michael Nugent
 * Date: 3/9/12
 * Time: 6:12 PM
 * URL: https://github.com/michaelnugent/libnoiseforjava
 * Package: libnoiseforjava.module
 */


/*
* A speed-improved simplex noise algorithm for 2D, 3D and 4D in Java.
*
* Based on example code by Stefan Gustavson (stegu@itn.liu.se).
* Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
* Better rank ordering method by Stefan Gustavson in 2012.
*
* This could be speeded up even further, but it's useful as it is.
*
* Version 2012-03-09
*
* This code was placed in the public domain by its original author,
* Stefan Gustavson. You may use it as you see fit, but
* attribution is appreciated.
*
* Modified by Michael Nugent (michael@michaelnugent.org) for the
* libnoise framework 20120309
* All libnoise expects 3d, but I've left the 2d and 4d functions in for
* reference.
*
*/

public class Simplex extends ModuleBase {  // Simplex noise in 2D, 3D and 4D
    private static Grad grad3[] = {new Grad(1,1,0),new Grad(-1,1,0),new Grad(1,-1,0),new Grad(-1,-1,0),
            new Grad(1,0,1),new Grad(-1,0,1),new Grad(1,0,-1),new Grad(-1,0,-1),
            new Grad(0,1,1),new Grad(0,-1,1),new Grad(0,1,-1),new Grad(0,-1,-1)};

    private static Grad grad4[]= {new Grad(0,1,1,1),new Grad(0,1,1,-1),new Grad(0,1,-1,1),new Grad(0,1,-1,-1),
            new Grad(0,-1,1,1),new Grad(0,-1,1,-1),new Grad(0,-1,-1,1),new Grad(0,-1,-1,-1),
            new Grad(1,0,1,1),new Grad(1,0,1,-1),new Grad(1,0,-1,1),new Grad(1,0,-1,-1),
            new Grad(-1,0,1,1),new Grad(-1,0,1,-1),new Grad(-1,0,-1,1),new Grad(-1,0,-1,-1),
            new Grad(1,1,0,1),new Grad(1,1,0,-1),new Grad(1,-1,0,1),new Grad(1,-1,0,-1),
            new Grad(-1,1,0,1),new Grad(-1,1,0,-1),new Grad(-1,-1,0,1),new Grad(-1,-1,0,-1),
            new Grad(1,1,1,0),new Grad(1,1,-1,0),new Grad(1,-1,1,0),new Grad(1,-1,-1,0),
            new Grad(-1,1,1,0),new Grad(-1,1,-1,0),new Grad(-1,-1,1,0),new Grad(-1,-1,-1,0)};

    private static short p[] = {151,160,137,91,90,15,
            131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
            190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
            88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
            77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
            102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
            135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
            5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
            223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
            129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
            251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
            49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
            138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180};
    // To remove the need for index wrapping, double the permutation table length
    private short perm[] = new short[512];
    private short permMod12[] = new short[512];
    
    private double seed = 0;

    public Simplex() {
        super(0);
        for(int i=0; i<512; i++) {
            perm[i]=p[i & 255];
            permMod12[i] = (short)(perm[i] % 12);
        }
    }

    public double getSeed() {
        return seed;
    }

    public void setSeed(double seed) {
        this.seed = seed;
    }

    public void setSeed(int seed) {
        this.seed = (double)seed;
    }

    // Skewing and unskewing factors for 2, 3, and 4 dimensions
    private static final double F2 = 0.5*(Math.sqrt(3.0)-1.0);
    private static final double G2 = (3.0-Math.sqrt(3.0))/6.0;
    private static final double F3 = 1.0/3.0;
    private static final double G3 = 1.0/6.0;
    private static final double F4 = (Math.sqrt(5.0)-1.0)/4.0;
    private static final double G4 = (5.0-Math.sqrt(5.0))/20.0;

    // This method is a *lot* faster than using (int)Math.floor(x)
    private static int fastfloor(double x) {
        int xi = (int)x;
        return x<xi ? xi-1 : xi;
    }

    private static double dot(Grad g, double x, double y) {
        return g.x*x + g.y*y;
    }

    private static double dot(Grad g, double x, double y, double z) {
        return g.x*x + g.y*y + g.z*z;
    }

    private static double dot(Grad g, double x, double y, double z, double w) {
        return g.x*x + g.y*y + g.z*z + g.w*w;
    }


    // 2D simplex noise
    public double getValue2d(double xin, double yin) {
        double n0, n1, n2; // Noise contributions from the three corners
        // Skew the input space to determine which simplex cell we're in
        double s = (xin+yin)*F2; // Hairy factor for 2D
        int i = fastfloor(xin+s);
        int j = fastfloor(yin+s);
        double t = (i+j)*G2;
        double X0 = i-t; // Unskew the cell origin back to (x,y) space
        double Y0 = j-t;
        double x0 = xin-X0; // The x,y distances from the cell origin
        double y0 = yin-Y0;
        // For the 2D case, the simplex shape is an equilateral triangle.
        // Determine which simplex we are in.
        int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
        if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
        else {i1=0; j1=1;}      // upper triangle, YX order: (0,0)->(0,1)->(1,1)
        // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
        // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
        // c = (3-sqrt(3))/6
        double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
        double y1 = y0 - j1 + G2;
        double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
        double y2 = y0 - 1.0 + 2.0 * G2;
        // Work out the hashed gradient indices of the three simplex corners
        int ii = i & 255;
        int jj = j & 255;

        int gi0 = permMod12[ii+perm[jj]];
        int gi1 = permMod12[ii+i1+perm[jj+j1]];
        int gi2 = permMod12[ii+1+perm[jj+1]];
        // Calculate the contribution from the three corners
        double t0 = 0.5 - x0*x0-y0*y0;
        if(t0<0) n0 = 0.0;
        else {
            t0 *= t0;
            n0 = t0 * t0 * dot(grad3[gi0], x0, y0);  // (x,y) of grad3 used for 2D gradient
        }
        double t1 = 0.5 - x1*x1-y1*y1;
        if(t1<0) n1 = 0.0;
        else {
            t1 *= t1;
            n1 = t1 * t1 * dot(grad3[gi1], x1, y1);
        }
        double t2 = 0.5 - x2*x2-y2*y2;
        if(t2<0) n2 = 0.0;
        else {
            t2 *= t2;
            n2 = t2 * t2 * dot(grad3[gi2], x2, y2);
        }
        // Add contributions from each corner to get the final noise value.
        // The result is scaled to return values in the interval [-1,1].
        return 70.0 * (n0 + n1 + n2);
    }


    // 3D simplex noise
    public double getValue(double xin, double yin, double zin) {
        double n0, n1, n2, n3; // Noise contributions from the four corners
        // Skew the input space to determine which simplex cell we're in
        xin+=(seed + (seed * 7)) % Double.MAX_VALUE;
        xin+=(seed + (seed * 13)) % Double.MAX_VALUE;
        xin+=(seed + (seed * 17)) % Double.MAX_VALUE;
        double s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D
        int i = fastfloor(xin+s);
        int j = fastfloor(yin+s);
        int k = fastfloor(zin+s);
        double t = (i+j+k)*G3;
        double X0 = i-t; // Unskew the cell origin back to (x,y,z) space
        double Y0 = j-t;
        double Z0 = k-t;
        double x0 = xin-X0; // The x,y,z distances from the cell origin
        double y0 = yin-Y0;
        double z0 = zin-Z0;
        // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
        // Determine which simplex we are in.
        int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
        int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
        if(x0>=y0) {
            if(y0>=z0)
            { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
            else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
            else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
        }
        else { // x0<y0
            if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
            else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
            else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
        }
        // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
        // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
        // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
        // c = 1/6.
        double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
        double y1 = y0 - j1 + G3;
        double z1 = z0 - k1 + G3;
        double x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords
        double y2 = y0 - j2 + 2.0*G3;
        double z2 = z0 - k2 + 2.0*G3;
        double x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords
        double y3 = y0 - 1.0 + 3.0*G3;
        double z3 = z0 - 1.0 + 3.0*G3;
        // Work out the hashed gradient indices of the four simplex corners
        int ii = i & 255;
        int jj = j & 255;
        int kk = k & 255;

        int gi0 = permMod12[ii+perm[jj+perm[kk]]];
        int gi1 = permMod12[ii+i1+perm[jj+j1+perm[kk+k1]]];
        int gi2 = permMod12[ii+i2+perm[jj+j2+perm[kk+k2]]];
        int gi3 = permMod12[ii+1+perm[jj+1+perm[kk+1]]];
        // Calculate the contribution from the four corners
        double t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
        if(t0<0) n0 = 0.0;
        else {
            t0 *= t0;
            n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
        }
        double t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
        if(t1<0) n1 = 0.0;
        else {
            t1 *= t1;
            n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
        }
        double t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
        if(t2<0) n2 = 0.0;
        else {
            t2 *= t2;
            n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
        }
        double t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
        if(t3<0) n3 = 0.0;
        else {
            t3 *= t3;
            n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
        }
        // Add contributions from each corner to get the final noise value.
        // The result is scaled to stay just inside [-1,1]
        return 32.0*(n0 + n1 + n2 + n3);
    }


    // 4D simplex noise, better simplex rank ordering method 2012-03-09
    public double getValue4d(double x, double y, double z, double w) {

        double n0, n1, n2, n3, n4; // Noise contributions from the five corners
        // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
        double s = (x + y + z + w) * F4; // Factor for 4D skewing
        int i = fastfloor(x + s);
        int j = fastfloor(y + s);
        int k = fastfloor(z + s);
        int l = fastfloor(w + s);
        double t = (i + j + k + l) * G4; // Factor for 4D unskewing
        double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
        double Y0 = j - t;
        double Z0 = k - t;
        double W0 = l - t;
        double x0 = x - X0;  // The x,y,z,w distances from the cell origin
        double y0 = y - Y0;
        double z0 = z - Z0;
        double w0 = w - W0;
        // For the 4D case, the simplex is a 4D shape I won't even try to describe.
        // To find out which of the 24 possible simplices we're in, we need to
        // determine the magnitude ordering of x0, y0, z0 and w0.
        // Six pair-wise comparisons are performed between each possible pair
        // of the four coordinates, and the results are used to rank the numbers.
        int rankx = 0;
        int ranky = 0;
        int rankz = 0;
        int rankw = 0;
        if(x0 > y0) rankx++; else ranky++;
        if(x0 > z0) rankx++; else rankz++;
        if(x0 > w0) rankx++; else rankw++;
        if(y0 > z0) ranky++; else rankz++;
        if(y0 > w0) ranky++; else rankw++;
        if(z0 > w0) rankz++; else rankw++;
        int i1, j1, k1, l1; // The integer offsets for the second simplex corner
        int i2, j2, k2, l2; // The integer offsets for the third simplex corner
        int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
        // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
        // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
        // impossible. Only the 24 indices which have non-zero entries make any sense.
        // We use a thresholding to set the coordinates in turn from the largest magnitude.
        // Rank 3 denotes the largest coordinate.
        i1 = rankx >= 3 ? 1 : 0;
        j1 = ranky >= 3 ? 1 : 0;
        k1 = rankz >= 3 ? 1 : 0;
        l1 = rankw >= 3 ? 1 : 0;
        // Rank 2 denotes the second largest coordinate.
        i2 = rankx >= 2 ? 1 : 0;
        j2 = ranky >= 2 ? 1 : 0;
        k2 = rankz >= 2 ? 1 : 0;
        l2 = rankw >= 2 ? 1 : 0;
        // Rank 1 denotes the second smallest coordinate.
        i3 = rankx >= 1 ? 1 : 0;
        j3 = ranky >= 1 ? 1 : 0;
        k3 = rankz >= 1 ? 1 : 0;
        l3 = rankw >= 1 ? 1 : 0;
        // The fifth corner has all coordinate offsets = 1, so no need to compute that.
        double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
        double y1 = y0 - j1 + G4;
        double z1 = z0 - k1 + G4;
        double w1 = w0 - l1 + G4;
        double x2 = x0 - i2 + 2.0*G4; // Offsets for third corner in (x,y,z,w) coords
        double y2 = y0 - j2 + 2.0*G4;
        double z2 = z0 - k2 + 2.0*G4;
        double w2 = w0 - l2 + 2.0*G4;
        double x3 = x0 - i3 + 3.0*G4; // Offsets for fourth corner in (x,y,z,w) coords
        double y3 = y0 - j3 + 3.0*G4;
        double z3 = z0 - k3 + 3.0*G4;
        double w3 = w0 - l3 + 3.0*G4;
        double x4 = x0 - 1.0 + 4.0*G4; // Offsets for last corner in (x,y,z,w) coords
        double y4 = y0 - 1.0 + 4.0*G4;
        double z4 = z0 - 1.0 + 4.0*G4;
        double w4 = w0 - 1.0 + 4.0*G4;
        // Work out the hashed gradient indices of the five simplex corners
        int ii = i & 255;
        int jj = j & 255;
        int kk = k & 255;
        int ll = l & 255;
        int gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32;
        int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32;
        int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32;
        int gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32;
        int gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32;
        // Calculate the contribution from the five corners
        double t0 = 0.6 - x0*x0 - y0*y0 - z0*z0 - w0*w0;
        if(t0<0) n0 = 0.0;
        else {
            t0 *= t0;
            n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0);
        }
        double t1 = 0.6 - x1*x1 - y1*y1 - z1*z1 - w1*w1;
        if(t1<0) n1 = 0.0;
        else {
            t1 *= t1;
            n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1);
        }
        double t2 = 0.6 - x2*x2 - y2*y2 - z2*z2 - w2*w2;
        if(t2<0) n2 = 0.0;
        else {
            t2 *= t2;
            n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2);
        }
        double t3 = 0.6 - x3*x3 - y3*y3 - z3*z3 - w3*w3;
        if(t3<0) n3 = 0.0;
        else {
            t3 *= t3;
            n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3);
        }
        double t4 = 0.6 - x4*x4 - y4*y4 - z4*z4 - w4*w4;
        if(t4<0) n4 = 0.0;
        else {
            t4 *= t4;
            n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4);
        }
        // Sum up and scale the result to cover the range [-1,1]
        return 27.0 * (n0 + n1 + n2 + n3 + n4);
    }

    // Inner class to speed upp gradient computations
    // (array access is a lot slower than member access)
    private static class Grad
    {
        double x, y, z, w;

        Grad(double x, double y, double z)
        {
            this.x = x;
            this.y = y;
            this.z = z;
        }

        Grad(double x, double y, double z, double w)
        {
            this.x = x;
            this.y = y;
            this.z = z;
            this.w = w;
        }
    }
}