summaryrefslogtreecommitdiffstats
path: root/src/com/mbien/opencl
diff options
context:
space:
mode:
Diffstat (limited to 'src/com/mbien/opencl')
-rw-r--r--src/com/mbien/opencl/demos/radixsort/RadixSort.cl358
-rw-r--r--src/com/mbien/opencl/demos/radixsort/RadixSort.java183
-rw-r--r--src/com/mbien/opencl/demos/radixsort/RadixSortDemo.java122
-rw-r--r--src/com/mbien/opencl/demos/radixsort/Scan.java131
-rw-r--r--src/com/mbien/opencl/demos/radixsort/Scan_b.cl190
5 files changed, 984 insertions, 0 deletions
diff --git a/src/com/mbien/opencl/demos/radixsort/RadixSort.cl b/src/com/mbien/opencl/demos/radixsort/RadixSort.cl
new file mode 100644
index 0000000..d014692
--- /dev/null
+++ b/src/com/mbien/opencl/demos/radixsort/RadixSort.cl
@@ -0,0 +1,358 @@
+/*
+* Copyright 1993-2009 NVIDIA Corporation. All rights reserved.
+*
+* NVIDIA Corporation and its licensors retain all intellectual property and
+* proprietary rights in and to this software and related documentation.
+* Any use, reproduction, disclosure, or distribution of this software
+* and related documentation without an express license agreement from
+* NVIDIA Corporation is strictly prohibited.
+*
+* Please refer to the applicable NVIDIA end user license agreement (EULA)
+* associated with this source code for terms and conditions that govern
+* your use of this NVIDIA software.
+*
+*/
+
+//----------------------------------------------------------------------------
+// Scans each warp in parallel ("warp-scan"), one element per thread.
+// uses 2 numElements of shared memory per thread (64 = elements per warp)
+//----------------------------------------------------------------------------
+//#define WARP_SIZE 32
+uint scanwarp(uint val, __local uint* sData, int maxlevel)
+{
+ // The following is the same as 2 * RadixSort::WARP_SIZE * warpId + threadInWarp =
+ // 64*(threadIdx.x >> 5) + (threadIdx.x & (RadixSort::WARP_SIZE - 1))
+ int localId = get_local_id(0);
+ int idx = 2 * localId - (localId & (WARP_SIZE - 1));
+ sData[idx] = 0;
+ idx += WARP_SIZE;
+ sData[idx] = val;
+
+ if (0 <= maxlevel) { sData[idx] += sData[idx - 1]; }
+ if (1 <= maxlevel) { sData[idx] += sData[idx - 2]; }
+ if (2 <= maxlevel) { sData[idx] += sData[idx - 4]; }
+ if (3 <= maxlevel) { sData[idx] += sData[idx - 8]; }
+ if (4 <= maxlevel) { sData[idx] += sData[idx -16]; }
+
+ return sData[idx] - val; // convert inclusive -> exclusive
+}
+
+//----------------------------------------------------------------------------
+// scan4 scans 4*RadixSort::CTA_SIZE numElements in a block (4 per thread), using
+// a warp-scan algorithm
+//----------------------------------------------------------------------------
+uint4 scan4(uint4 idata, __local uint* ptr)
+{
+
+ uint idx = get_local_id(0);
+
+ uint4 val4 = idata;
+ uint sum[3];
+ sum[0] = val4.x;
+ sum[1] = val4.y + sum[0];
+ sum[2] = val4.z + sum[1];
+
+ uint val = val4.w + sum[2];
+
+ val = scanwarp(val, ptr, 4);
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if ((idx & (WARP_SIZE - 1)) == WARP_SIZE - 1)
+ {
+ ptr[idx >> 5] = val + val4.w + sum[2];
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if (idx < WARP_SIZE)
+ ptr[idx] = scanwarp(ptr[idx], ptr, 2);
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ val += ptr[idx >> 5];
+
+ val4.x = val;
+ val4.y = val + sum[0];
+ val4.z = val + sum[1];
+ val4.w = val + sum[2];
+
+ return val4;
+}
+
+#ifdef MAC
+__kernel uint4 rank4(uint4 preds, __local uint* sMem)
+#else
+uint4 rank4(uint4 preds, __local uint* sMem)
+#endif
+{
+ int localId = get_local_id(0);
+ int localSize = get_local_size(0);
+
+ uint4 address = scan4(preds, sMem);
+
+ __local uint numtrue;
+ if (localId == localSize - 1)
+ {
+ numtrue = address.w + preds.w;
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ uint4 rank;
+ int idx = localId*4;
+ rank.x = (preds.x) ? address.x : numtrue + idx - address.x;
+ rank.y = (preds.y) ? address.y : numtrue + idx + 1 - address.y;
+ rank.z = (preds.z) ? address.z : numtrue + idx + 2 - address.z;
+ rank.w = (preds.w) ? address.w : numtrue + idx + 3 - address.w;
+
+ return rank;
+}
+
+void radixSortBlockKeysOnly(uint4 *key, uint nbits, uint startbit, __local uint* sMem)
+{
+ int localId = get_local_id(0);
+ int localSize = get_local_size(0);
+
+ for(uint shift = startbit; shift < (startbit + nbits); ++shift)
+ {
+ uint4 lsb;
+ lsb.x = !(((*key).x >> shift) & 0x1);
+ lsb.y = !(((*key).y >> shift) & 0x1);
+ lsb.z = !(((*key).z >> shift) & 0x1);
+ lsb.w = !(((*key).w >> shift) & 0x1);
+
+ uint4 r;
+
+ r = rank4(lsb, sMem);
+
+ // This arithmetic strides the ranks across 4 CTA_SIZE regions
+ sMem[(r.x & 3) * localSize + (r.x >> 2)] = (*key).x;
+ sMem[(r.y & 3) * localSize + (r.y >> 2)] = (*key).y;
+ sMem[(r.z & 3) * localSize + (r.z >> 2)] = (*key).z;
+ sMem[(r.w & 3) * localSize + (r.w >> 2)] = (*key).w;
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ // The above allows us to read without 4-way bank conflicts:
+ (*key).x = sMem[localId];
+ (*key).y = sMem[localId + localSize];
+ (*key).z = sMem[localId + 2 * localSize];
+ (*key).w = sMem[localId + 3 * localSize];
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+}
+
+__kernel void radixSortBlocksKeysOnly(__global uint4* keysIn,
+ __global uint4* keysOut,
+ uint nbits,
+ uint startbit,
+ uint numElements,
+ uint totalBlocks,
+ __local uint* sMem)
+{
+ int globalId = get_global_id(0);
+
+ uint4 key;
+ key = keysIn[globalId];
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ radixSortBlockKeysOnly(&key, nbits, startbit, sMem);
+
+ keysOut[globalId] = key;
+}
+
+//----------------------------------------------------------------------------
+// Given an array with blocks sorted according to a 4-bit radix group, each
+// block counts the number of keys that fall into each radix in the group, and
+// finds the starting offset of each radix in the block. It then writes the radix
+// counts to the counters array, and the starting offsets to the blockOffsets array.
+//
+// Template parameters are used to generate efficient code for various special cases
+// For example, we have to handle arrays that are a multiple of the block size
+// (fullBlocks) differently than arrays that are not. "loop" is used when persistent
+// CTAs are used.
+//
+// By persistent CTAs we mean that we launch only as many thread blocks as can
+// be resident in the GPU and no more, rather than launching as many threads as
+// we have elements. Persistent CTAs loop over blocks of elements until all work
+// is complete. This can be faster in some cases. In our tests it is faster
+// for large sorts (and the threshold is higher on compute version 1.1 and earlier
+// GPUs than it is on compute version 1.2 GPUs.
+//
+//----------------------------------------------------------------------------
+__kernel void findRadixOffsets(__global uint2* keys,
+ __global uint* counters,
+ __global uint* blockOffsets,
+ uint startbit,
+ uint numElements,
+ uint totalBlocks,
+ __local uint* sRadix1)
+{
+ __local uint sStartPointers[16];
+
+ uint groupId = get_group_id(0);
+ uint localId = get_local_id(0);
+ uint groupSize = get_local_size(0);
+
+ uint2 radix2;
+
+ radix2 = keys[get_global_id(0)];
+
+
+ sRadix1[2 * localId] = (radix2.x >> startbit) & 0xF;
+ sRadix1[2 * localId + 1] = (radix2.y >> startbit) & 0xF;
+
+ // Finds the position where the sRadix1 entries differ and stores start
+ // index for each radix.
+ if(localId < 16)
+ {
+ sStartPointers[localId] = 0;
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if((localId > 0) && (sRadix1[localId] != sRadix1[localId - 1]) )
+ {
+ sStartPointers[sRadix1[localId]] = localId;
+ }
+ if(sRadix1[localId + groupSize] != sRadix1[localId + groupSize - 1])
+ {
+ sStartPointers[sRadix1[localId + groupSize]] = localId + groupSize;
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if(localId < 16)
+ {
+ blockOffsets[groupId*16 + localId] = sStartPointers[localId];
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ // Compute the sizes of each block.
+ if((localId > 0) && (sRadix1[localId] != sRadix1[localId - 1]) )
+ {
+ sStartPointers[sRadix1[localId - 1]] =
+ localId - sStartPointers[sRadix1[localId - 1]];
+ }
+ if(sRadix1[localId + groupSize] != sRadix1[localId + groupSize - 1] )
+ {
+ sStartPointers[sRadix1[localId + groupSize - 1]] =
+ localId + groupSize - sStartPointers[sRadix1[localId + groupSize - 1]];
+ }
+
+
+ if(localId == groupSize - 1)
+ {
+ sStartPointers[sRadix1[2 * groupSize - 1]] =
+ 2 * groupSize - sStartPointers[sRadix1[2 * groupSize - 1]];
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if(localId < 16)
+ {
+ counters[localId * totalBlocks + groupId] = sStartPointers[localId];
+ }
+}
+
+// a naive scan routine that works only for array that
+// can fit into a single block, just for debugging purpose,
+// not used in the sort now
+__kernel void scanNaive(__global uint *g_odata,
+ __global uint *g_idata,
+ uint n,
+ __local uint* temp)
+{
+
+ int localId = get_local_id(0);
+
+ int pout = 0;
+ int pin = 1;
+
+ // Cache the computational window in shared memory
+ temp[pout*n + localId] = (localId > 0) ? g_idata[localId-1] : 0;
+
+ for (int offset = 1; offset < n; offset *= 2)
+ {
+ pout = 1 - pout;
+ pin = 1 - pout;
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ temp[pout*n+localId] = temp[pin*n+localId];
+
+ if (localId >= offset)
+ temp[pout*n+localId] += temp[pin*n+localId - offset];
+ }
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ g_odata[localId] = temp[pout*n+localId];
+}
+
+//----------------------------------------------------------------------------
+// reorderData shuffles data in the array globally after the radix offsets
+// have been found. On compute version 1.1 and earlier GPUs, this code depends
+// on RadixSort::CTA_SIZE being 16 * number of radices (i.e. 16 * 2^nbits).
+//
+// On compute version 1.1 GPUs ("manualCoalesce=true") this function ensures
+// that all writes are coalesced using extra work in the kernel. On later
+// GPUs coalescing rules have been relaxed, so this extra overhead hurts
+// performance. On these GPUs we set manualCoalesce=false and directly store
+// the results.
+//
+// Template parameters are used to generate efficient code for various special cases
+// For example, we have to handle arrays that are a multiple of the block size
+// (fullBlocks) differently than arrays that are not. "loop" is used when persistent
+// CTAs are used.
+//
+// By persistent CTAs we mean that we launch only as many thread blocks as can
+// be resident in the GPU and no more, rather than launching as many threads as
+// we have elements. Persistent CTAs loop over blocks of elements until all work
+// is complete. This can be faster in some cases. In our tests it is faster
+// for large sorts (and the threshold is higher on compute version 1.1 and earlier
+// GPUs than it is on compute version 1.2 GPUs.
+//----------------------------------------------------------------------------
+__kernel void reorderDataKeysOnly(__global uint *outKeys,
+ __global uint2 *keys,
+ __global uint *blockOffsets,
+ __global uint *offsets,
+ __global uint *sizes,
+ uint startbit,
+ uint numElements,
+ uint totalBlocks,
+ __local uint2* sKeys2)
+{
+ __local uint sOffsets[16];
+ __local uint sBlockOffsets[16];
+
+ __local uint *sKeys1 = (__local uint*)sKeys2;
+
+ uint groupId = get_group_id(0);
+
+ uint globalId = get_global_id(0);
+ uint localId = get_local_id(0);
+ uint groupSize = get_local_size(0);
+
+ sKeys2[localId] = keys[globalId];
+
+ if(localId < 16)
+ {
+ sOffsets[localId] = offsets[localId * totalBlocks + groupId];
+ sBlockOffsets[localId] = blockOffsets[groupId * 16 + localId];
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ uint radix = (sKeys1[localId] >> startbit) & 0xF;
+ uint globalOffset = sOffsets[radix] + localId - sBlockOffsets[radix];
+
+ if (globalOffset < numElements)
+ {
+ outKeys[globalOffset] = sKeys1[localId];
+ }
+
+ radix = (sKeys1[localId + groupSize] >> startbit) & 0xF;
+ globalOffset = sOffsets[radix] + localId + groupSize - sBlockOffsets[radix];
+
+ if (globalOffset < numElements)
+ {
+ outKeys[globalOffset] = sKeys1[localId + groupSize];
+ }
+
+
+}
diff --git a/src/com/mbien/opencl/demos/radixsort/RadixSort.java b/src/com/mbien/opencl/demos/radixsort/RadixSort.java
new file mode 100644
index 0000000..783c094
--- /dev/null
+++ b/src/com/mbien/opencl/demos/radixsort/RadixSort.java
@@ -0,0 +1,183 @@
+/*
+ * 20:38 Sunday, February 28 2010
+ */
+
+package com.mbien.opencl.demos.radixsort;
+
+import com.mbien.opencl.CLBuffer;
+import com.mbien.opencl.CLCommandQueue;
+import com.mbien.opencl.CLContext;
+import com.mbien.opencl.CLKernel;
+import com.mbien.opencl.CLProgram;
+import com.mbien.opencl.CLResource;
+import java.io.IOException;
+import java.nio.IntBuffer;
+
+import static com.mbien.opencl.CLMemory.Mem.*;
+import static com.mbien.opencl.CLProgram.*;
+import static com.mbien.opencl.CLProgram.CompilerOptions.*;
+import static java.lang.System.*;
+
+/**
+ *
+ * @author Michael Bien
+ */
+public class RadixSort implements CLResource {
+
+ private static final int NUM_BANKS = 16;
+ private static final int WARP_SIZE = 32;
+ private static final int bitStep = 4;
+
+ private final int CTA_SIZE;
+
+ private final CLKernel ckRadixSortBlocksKeysOnly;
+ private final CLKernel ckFindRadixOffsets;
+ private final CLKernel ckScanNaive;
+ private final CLKernel ckReorderDataKeysOnly;
+
+ private final CLBuffer<?> tempKeys;
+ private final CLBuffer<?> mCounters;
+ private final CLBuffer<?> mCountersSum;
+ private final CLBuffer<?> mBlockOffsets;
+
+ private final CLCommandQueue queue;
+ private final Scan scan;
+ private final CLProgram program;
+
+ public RadixSort(CLCommandQueue queue, int maxElements, int CTA_SIZE) throws IOException {
+
+ this.CTA_SIZE = CTA_SIZE;
+ scan = new Scan(queue, maxElements / 2 / CTA_SIZE * 16);
+
+ int numBlocks = ((maxElements % (CTA_SIZE * 4)) == 0)
+ ? (maxElements / (CTA_SIZE * 4)) : (maxElements / (CTA_SIZE * 4) + 1);
+
+ this.queue = queue;
+
+ CLContext context = queue.getContext();
+ this.tempKeys = context.createBuffer(4 * maxElements, READ_WRITE);
+ this.mCounters = context.createBuffer(4 * WARP_SIZE * numBlocks, READ_WRITE);
+ this.mCountersSum = context.createBuffer(4 * WARP_SIZE * numBlocks, READ_WRITE);
+ this.mBlockOffsets = context.createBuffer(4 * WARP_SIZE * numBlocks, READ_WRITE);
+
+ program = context.createProgram(getClass().getResourceAsStream("RadixSort.cl"))
+ .build(ENABLE_MAD, define("WARP_SIZE", WARP_SIZE));
+
+// out.println(program.getBuildLog());
+
+ ckRadixSortBlocksKeysOnly = program.createCLKernel("radixSortBlocksKeysOnly");
+ ckFindRadixOffsets = program.createCLKernel("findRadixOffsets");
+ ckScanNaive = program.createCLKernel("scanNaive");
+ ckReorderDataKeysOnly = program.createCLKernel("reorderDataKeysOnly");
+
+ }
+
+ void sort(CLBuffer<IntBuffer> d_keys, int numElements, int keyBits) {
+ radixSortKeysOnly(d_keys, numElements, keyBits);
+ }
+
+ //----------------------------------------------------------------------------
+ // Main key-only radix sort function. Sorts in place in the keys and values
+ // arrays, but uses the other device arrays as temporary storage. All pointer
+ // parameters are device pointers. Uses cudppScan() for the prefix sum of
+ // radix counters.
+ //----------------------------------------------------------------------------
+ void radixSortKeysOnly(CLBuffer<IntBuffer> keys, int numElements, int keyBits) {
+ int i = 0;
+ while (keyBits > i * bitStep) {
+ radixSortStepKeysOnly(keys, bitStep, i * bitStep, numElements);
+ i++;
+ }
+ }
+
+ //----------------------------------------------------------------------------
+ // Perform one step of the radix sort. Sorts by nbits key bits per step,
+ // starting at startbit.
+ //----------------------------------------------------------------------------
+ void radixSortStepKeysOnly(CLBuffer<IntBuffer> keys, int nbits, int startbit, int numElements) {
+
+ // Four step algorithms from Satish, Harris & Garland
+ radixSortBlocksKeysOnlyOCL(keys, nbits, startbit, numElements);
+
+ findRadixOffsetsOCL(startbit, numElements);
+
+ scan.scanExclusiveLarge(mCountersSum, mCounters, 1, numElements / 2 / CTA_SIZE * 16);
+
+ reorderDataKeysOnlyOCL(keys, startbit, numElements);
+ }
+
+ //----------------------------------------------------------------------------
+ // Wrapper for the kernels of the four steps
+ //----------------------------------------------------------------------------
+ void radixSortBlocksKeysOnlyOCL(CLBuffer<IntBuffer> keys, int nbits, int startbit, int numElements) {
+
+ int totalBlocks = numElements / 4 / CTA_SIZE;
+ int globalWorkSize = CTA_SIZE * totalBlocks;
+ int localWorkSize = CTA_SIZE;
+
+ ckRadixSortBlocksKeysOnly.putArg(keys).putArg(tempKeys).putArg(nbits).putArg(startbit)
+ .putArg(numElements).putArg(totalBlocks).putNullArg(4 * CTA_SIZE * 4)
+ .rewind();
+
+ queue.put1DRangeKernel(ckRadixSortBlocksKeysOnly, 0, globalWorkSize, localWorkSize);
+ }
+
+ void findRadixOffsetsOCL(int startbit, int numElements) {
+
+ int totalBlocks = numElements / 2 / CTA_SIZE;
+ int globalWorkSize = CTA_SIZE * totalBlocks;
+ int localWorkSize = CTA_SIZE;
+
+ ckFindRadixOffsets.putArg(tempKeys).putArg(mCounters).putArg(mBlockOffsets)
+ .putArg(startbit).putArg(numElements).putArg(totalBlocks).putNullArg(2 * CTA_SIZE * 4)
+ .rewind();
+
+ queue.put1DRangeKernel(ckFindRadixOffsets, 0, globalWorkSize, localWorkSize);
+ }
+
+ void scanNaiveOCL(int numElements) {
+
+ int nHist = numElements / 2 / CTA_SIZE * 16;
+ int globalWorkSize = nHist;
+ int localWorkSize = nHist;
+ int extra_space = nHist / NUM_BANKS;
+ int shared_mem_size = 4 * (nHist + extra_space);
+
+ ckScanNaive.putArg(mCountersSum).putArg(mCounters).putArg(nHist).putNullArg(2 * shared_mem_size).rewind();
+
+ queue.put1DRangeKernel(ckScanNaive, 0, globalWorkSize, localWorkSize);
+ }
+
+ void reorderDataKeysOnlyOCL(CLBuffer<IntBuffer> keys, int startbit, int numElements) {
+
+ int totalBlocks = numElements / 2 / CTA_SIZE;
+ int globalWorkSize = CTA_SIZE * totalBlocks;
+ int localWorkSize = CTA_SIZE;
+
+ ckReorderDataKeysOnly.putArg(keys).putArg(tempKeys).putArg(mBlockOffsets).putArg(mCountersSum).putArg(mCounters)
+ .putArg(startbit).putArg(numElements).putArg(totalBlocks).putNullArg(2 * CTA_SIZE * 4).rewind();
+
+ queue.put1DRangeKernel(ckReorderDataKeysOnly, 0, globalWorkSize, localWorkSize);
+ }
+
+ public void release() {
+
+ scan.release();
+
+ //program & kernels
+ program.release();
+
+ //buffers
+ tempKeys.release();
+ mCounters.release();
+ mCountersSum.release();
+ mBlockOffsets.release();
+ }
+
+ public void close() {
+ release();
+ }
+
+
+
+}
diff --git a/src/com/mbien/opencl/demos/radixsort/RadixSortDemo.java b/src/com/mbien/opencl/demos/radixsort/RadixSortDemo.java
new file mode 100644
index 0000000..a46eb22
--- /dev/null
+++ b/src/com/mbien/opencl/demos/radixsort/RadixSortDemo.java
@@ -0,0 +1,122 @@
+/*
+ * 20:48 Sunday, February 28 2010
+ */
+
+package com.mbien.opencl.demos.radixsort;
+
+import com.mbien.opencl.CLBuffer;
+import com.mbien.opencl.CLCommandQueue;
+import com.mbien.opencl.CLContext;
+import com.mbien.opencl.CLPlatform;
+import java.io.IOException;
+import java.nio.IntBuffer;
+import java.util.Random;
+
+import static com.mbien.opencl.CLMemory.Mem.*;
+import static java.lang.System.*;
+import static com.mbien.opencl.CLDevice.Type.*;
+
+/**
+ * GPU radix sort demo.
+ * @author Michael Bien
+ */
+public class RadixSortDemo {
+
+ public RadixSortDemo() throws IOException {
+
+ CLContext context = null;
+ try{
+ //single GPU setup
+ context = CLContext.create(CLPlatform.getDefault().getMaxFlopsDevice(GPU));
+ CLCommandQueue queue = context.getDevices()[0].createCommandQueue();
+
+ int maxValue = 10000000;
+
+ int[] workgroupSizes = new int[] {128, 256};
+
+ int[] runs = new int[] { 131072,
+ 262144,
+ 524288,
+ 1048576,
+ 2097152,
+ 4194304,
+ 8388608 };
+
+ for (int i = 0; i < workgroupSizes.length; i++) {
+
+ int workgroupSize = workgroupSizes[i];
+
+ out.println("\n = = = workgroup size: "+workgroupSize+" = = = ");
+
+ for(int run = 0; run < runs.length; run++) {
+
+ if(workgroupSize==128 && run == runs.length-1) {
+ break; // we can only sort up to 4MB with wg size of 128
+ }
+
+ int numElements = runs[run];
+
+ CLBuffer<IntBuffer> array = context.createIntBuffer(numElements, READ_WRITE);
+ out.print("array size: " + array.getCLSize()/1000000.0f+"MB; ");
+ out.println("elements: " + array.getCapacity()/1000+"K");
+
+ fillBuffer(array, maxValue);
+
+ RadixSort radixSort = new RadixSort(queue, numElements, workgroupSize);
+ queue.finish();
+
+ long time = currentTimeMillis();
+
+ queue.putWriteBuffer(array, false);
+ radixSort.sort(array, numElements, 32);
+ queue.putReadBuffer(array, true);
+
+ out.println("time: " + (currentTimeMillis() - time)+"ms");
+
+ out.print("snapshot: ");
+ printSnapshot(array.getBuffer(), 20);
+
+ out.println("validating...");
+ checkIfSorted(array.getBuffer());
+ out.println("values sorted");
+
+ array.release();
+ radixSort.release();
+ }
+ }
+
+ }finally{
+ if(context != null) {
+ context.release();
+ }
+ }
+
+ }
+
+ private void fillBuffer(CLBuffer<IntBuffer> array, int maxValue) {
+ Random random = new Random(42);
+ for (int n = 0; n < array.getBuffer().capacity(); n++) {
+ int rnd = random.nextInt(maxValue);
+ array.getBuffer().put(n, rnd);
+ }
+ }
+
+ private void printSnapshot(IntBuffer buffer, int snapshot) {
+ for(int i = 0; i < snapshot; i++)
+ out.print(buffer.get() + ", ");
+ out.println("...; " + buffer.remaining() + " more");
+ buffer.rewind();
+ }
+
+ private void checkIfSorted(IntBuffer keys) {
+ for (int i = 1; i < keys.capacity(); i++) {
+ if (keys.get(i - 1) > keys.get(i)) {
+ throw new RuntimeException("not sorted "+ keys.get(i - 1) +" !> "+ keys.get(i));
+ }
+ }
+ }
+
+ public static void main(String[] args) throws IOException {
+ new RadixSortDemo();
+ }
+}
diff --git a/src/com/mbien/opencl/demos/radixsort/Scan.java b/src/com/mbien/opencl/demos/radixsort/Scan.java
new file mode 100644
index 0000000..1426e9b
--- /dev/null
+++ b/src/com/mbien/opencl/demos/radixsort/Scan.java
@@ -0,0 +1,131 @@
+/*
+ * 22:12 Sunday, February 28 2010
+ */
+package com.mbien.opencl.demos.radixsort;
+
+import com.mbien.opencl.CLBuffer;
+import com.mbien.opencl.CLCommandQueue;
+import com.mbien.opencl.CLContext;
+import com.mbien.opencl.CLKernel;
+import com.mbien.opencl.CLProgram;
+import com.mbien.opencl.CLResource;
+import java.io.IOException;
+
+import static com.mbien.opencl.CLMemory.Mem.*;
+import static com.mbien.opencl.CLProgram.CompilerOptions.*;
+
+/**
+ *
+ * @author Michael Bien
+ */
+public class Scan implements CLResource {
+
+ private final static int MAX_WORKGROUP_INCLUSIVE_SCAN_SIZE = 1024;
+ private final static int MAX_LOCAL_GROUP_SIZE = 256;
+ private final static int WORKGROUP_SIZE = 256;
+ private final static int MAX_BATCH_ELEMENTS = 64 * 1048576;
+ private final static int MIN_SHORT_ARRAY_SIZE = 4;
+ private final static int MAX_SHORT_ARRAY_SIZE = 4 * WORKGROUP_SIZE;
+ private final static int MIN_LARGE_ARRAY_SIZE = 8 * WORKGROUP_SIZE;
+ private final static int MAX_LARGE_ARRAY_SIZE = 4 * WORKGROUP_SIZE * WORKGROUP_SIZE;
+
+ private final CLKernel ckScanExclusiveLocal1;
+ private final CLKernel ckScanExclusiveLocal2;
+ private final CLKernel ckUniformUpdate;
+
+ private final CLCommandQueue queue;
+ private final CLProgram program;
+ private CLBuffer<?> buffer;
+
+ public Scan(CLCommandQueue queue, int numElements) throws IOException {
+
+ this.queue = queue;
+
+ CLContext context = queue.getContext();
+ if (numElements > MAX_WORKGROUP_INCLUSIVE_SCAN_SIZE) {
+ buffer = context.createBuffer(numElements / MAX_WORKGROUP_INCLUSIVE_SCAN_SIZE * 4, READ_WRITE);
+ }
+ program = context.createProgram(getClass().getResourceAsStream("Scan_b.cl"))
+ .build(ENABLE_MAD);
+
+ ckScanExclusiveLocal1 = program.createCLKernel("scanExclusiveLocal1");
+ ckScanExclusiveLocal2 = program.createCLKernel("scanExclusiveLocal2");
+ ckUniformUpdate = program.createCLKernel("uniformUpdate");
+ }
+
+ // main exclusive scan routine
+ void scanExclusiveLarge(CLBuffer<?> dst, CLBuffer<?> src, int batchSize, int arrayLength) {
+
+ //Check power-of-two factorization
+ if(!isPowerOf2(arrayLength)) {
+ throw new RuntimeException();
+ }
+
+ //Check supported size range
+ if (!((arrayLength >= MIN_LARGE_ARRAY_SIZE) && (arrayLength <= MAX_LARGE_ARRAY_SIZE))) {
+ throw new RuntimeException();
+ }
+
+ //Check total batch size limit
+ if (!((batchSize * arrayLength) <= MAX_BATCH_ELEMENTS)) {
+ throw new RuntimeException();
+ }
+
+ scanExclusiveLocal1(dst, src, (batchSize * arrayLength) / (4 * WORKGROUP_SIZE), 4 * WORKGROUP_SIZE);
+ scanExclusiveLocal2(buffer, dst, src, batchSize, arrayLength / (4 * WORKGROUP_SIZE));
+ uniformUpdate(dst, buffer, (batchSize * arrayLength) / (4 * WORKGROUP_SIZE));
+ }
+
+ void scanExclusiveLocal1(CLBuffer<?> dst, CLBuffer<?> src, int n, int size) {
+
+ ckScanExclusiveLocal1.putArg(dst).putArg(src).putNullArg(2 * WORKGROUP_SIZE * 4).putArg(size)
+ .rewind();
+
+ int localWorkSize = WORKGROUP_SIZE;
+ int globalWorkSize = (n * size) / 4;
+
+ queue.put1DRangeKernel(ckScanExclusiveLocal1, 0, globalWorkSize, localWorkSize);
+ }
+
+ void scanExclusiveLocal2(CLBuffer<?> buffer, CLBuffer<?> dst, CLBuffer<?> src, int n, int size) {
+
+ int elements = n * size;
+ ckScanExclusiveLocal2.putArg(buffer).putArg(dst).putArg(src).putNullArg(2 * WORKGROUP_SIZE * 4)
+ .putArg(elements).putArg(size).rewind();
+
+ int localWorkSize = WORKGROUP_SIZE;
+ int globalWorkSize = iSnapUp(elements, WORKGROUP_SIZE);
+
+ queue.put1DRangeKernel(ckScanExclusiveLocal2, 0, globalWorkSize, localWorkSize);
+ }
+
+ void uniformUpdate(CLBuffer<?> dst, CLBuffer<?> buffer, int n) {
+
+ ckUniformUpdate.setArgs(dst, buffer);
+
+ int localWorkSize = WORKGROUP_SIZE;
+ int globalWorkSize = n * WORKGROUP_SIZE;
+
+ queue.put1DRangeKernel(ckUniformUpdate, 0, globalWorkSize, localWorkSize);
+ }
+
+ private int iSnapUp(int dividend, int divisor) {
+ return ((dividend % divisor) == 0) ? dividend : (dividend - dividend % divisor + divisor);
+ }
+
+ public static boolean isPowerOf2(int x) {
+ return ((x - 1) & x) == 0;
+ }
+
+ public void release() {
+ program.release();
+
+ if(buffer!=null) {
+ buffer.release();
+ }
+ }
+
+ public void close() {
+ release();
+ }
+}
diff --git a/src/com/mbien/opencl/demos/radixsort/Scan_b.cl b/src/com/mbien/opencl/demos/radixsort/Scan_b.cl
new file mode 100644
index 0000000..32fd4dd
--- /dev/null
+++ b/src/com/mbien/opencl/demos/radixsort/Scan_b.cl
@@ -0,0 +1,190 @@
+/*
+ * Copyright 1993-2009 NVIDIA Corporation. All rights reserved.
+ *
+ * NVIDIA Corporation and its licensors retain all intellectual property and
+ * proprietary rights in and to this software and related documentation.
+ * Any use, reproduction, disclosure, or distribution of this software
+ * and related documentation without an express license agreement from
+ * NVIDIA Corporation is strictly prohibited.
+ *
+ * Please refer to the applicable NVIDIA end user license agreement (EULA)
+ * associated with this source code for terms and conditions that govern
+ * your use of this NVIDIA software.
+ *
+ */
+
+
+
+//All three kernels run 512 threads per workgroup
+//Must be a power of two
+#define WORKGROUP_SIZE 256
+
+
+
+////////////////////////////////////////////////////////////////////////////////
+// Scan codelets
+////////////////////////////////////////////////////////////////////////////////
+#if(1)
+ //Naive inclusive scan: O(N * log2(N)) operations
+ //Allocate 2 * 'size' local memory, initialize the first half
+ //with 'size' zeros avoiding if(pos >= offset) condition evaluation
+ //and saving instructions
+ inline uint scan1Inclusive(uint idata, __local uint *l_Data, uint size){
+ uint pos = 2 * get_local_id(0) - (get_local_id(0) & (size - 1));
+ l_Data[pos] = 0;
+ pos += size;
+ l_Data[pos] = idata;
+
+ for(uint offset = 1; offset < size; offset <<= 1){
+ barrier(CLK_LOCAL_MEM_FENCE);
+ uint t = l_Data[pos] + l_Data[pos - offset];
+ barrier(CLK_LOCAL_MEM_FENCE);
+ l_Data[pos] = t;
+ }
+
+ return l_Data[pos];
+ }
+
+ inline uint scan1Exclusive(uint idata, __local uint *l_Data, uint size){
+ return scan1Inclusive(idata, l_Data, size) - idata;
+ }
+
+#else
+ #define LOG2_WARP_SIZE 5U
+ #define WARP_SIZE (1U << LOG2_WARP_SIZE)
+
+ //Almost the same as naiveScan1 but doesn't need barriers
+ //assuming size <= WARP_SIZE
+ inline uint warpScanInclusive(uint idata, __local uint *l_Data, uint size){
+ uint pos = 2 * get_local_id(0) - (get_local_id(0) & (size - 1));
+ l_Data[pos] = 0;
+ pos += size;
+ l_Data[pos] = idata;
+
+ for(uint offset = 1; offset < size; offset <<= 1)
+ l_Data[pos] += l_Data[pos - offset];
+
+ return l_Data[pos];
+ }
+
+ inline uint warpScanExclusive(uint idata, __local uint *l_Data, uint size){
+ return warpScanInclusive(idata, l_Data, size) - idata;
+ }
+
+ inline uint scan1Inclusive(uint idata, __local uint *l_Data, uint size){
+ if(size > WARP_SIZE){
+ //Bottom-level inclusive warp scan
+ uint warpResult = warpScanInclusive(idata, l_Data, WARP_SIZE);
+
+ //Save top elements of each warp for exclusive warp scan
+ //sync to wait for warp scans to complete (because l_Data is being overwritten)
+ barrier(CLK_LOCAL_MEM_FENCE);
+ if( (get_local_id(0) & (WARP_SIZE - 1)) == (WARP_SIZE - 1) )
+ l_Data[get_local_id(0) >> LOG2_WARP_SIZE] = warpResult;
+
+ //wait for warp scans to complete
+ barrier(CLK_LOCAL_MEM_FENCE);
+ if( get_local_id(0) < (WORKGROUP_SIZE / WARP_SIZE) ){
+ //grab top warp elements
+ uint val = l_Data[get_local_id(0)];
+ //calculate exclsive scan and write back to shared memory
+ l_Data[get_local_id(0)] = warpScanExclusive(val, l_Data, size >> LOG2_WARP_SIZE);
+ }
+
+ //return updated warp scans with exclusive scan results
+ barrier(CLK_LOCAL_MEM_FENCE);
+ return warpResult + l_Data[get_local_id(0) >> LOG2_WARP_SIZE];
+ }else{
+ return warpScanInclusive(idata, l_Data, size);
+ }
+ }
+
+ inline uint scan1Exclusive(uint idata, __local uint *l_Data, uint size){
+ return scan1Inclusive(idata, l_Data, size) - idata;
+ }
+#endif
+
+
+//Vector scan: the array to be scanned is stored
+//in work-item private memory as uint4
+inline uint4 scan4Inclusive(uint4 data4, __local uint *l_Data, uint size){
+ //Level-0 inclusive scan
+ data4.y += data4.x;
+ data4.z += data4.y;
+ data4.w += data4.z;
+
+ //Level-1 exclusive scan
+ uint val = scan1Inclusive(data4.w, l_Data, size / 4) - data4.w;
+
+ return (data4 + (uint4)val);
+}
+
+inline uint4 scan4Exclusive(uint4 data4, __local uint *l_Data, uint size){
+ return scan4Inclusive(data4, l_Data, size) - data4;
+}
+
+
+////////////////////////////////////////////////////////////////////////////////
+// Scan kernels
+////////////////////////////////////////////////////////////////////////////////
+__kernel __attribute__((reqd_work_group_size(WORKGROUP_SIZE, 1, 1)))
+void scanExclusiveLocal1(
+ __global uint4 *d_Dst,
+ __global uint4 *d_Src,
+ __local uint* l_Data,
+ uint size
+){
+ //Load data
+ uint4 idata4 = d_Src[get_global_id(0)];
+
+ //Calculate exclusive scan
+ uint4 odata4 = scan4Exclusive(idata4, l_Data, size);
+
+ //Write back
+ d_Dst[get_global_id(0)] = odata4;
+}
+
+//Exclusive scan of top elements of bottom-level scans (4 * THREADBLOCK_SIZE)
+__kernel __attribute__((reqd_work_group_size(WORKGROUP_SIZE, 1, 1)))
+void scanExclusiveLocal2(
+ __global uint *d_Buf,
+ __global uint *d_Dst,
+ __global uint *d_Src,
+ __local uint* l_Data,
+ uint N,
+ uint arrayLength
+){
+ //Load top elements
+ //Convert results of bottom-level scan back to inclusive
+ //Skip loads and stores for inactive work-items of the work-group with highest index(pos >= N)
+ uint data = 0;
+ if(get_global_id(0) < N)
+ data =
+ d_Dst[(4 * WORKGROUP_SIZE - 1) + (4 * WORKGROUP_SIZE) * get_global_id(0)] +
+ d_Src[(4 * WORKGROUP_SIZE - 1) + (4 * WORKGROUP_SIZE) * get_global_id(0)];
+
+ //Compute
+ uint odata = scan1Exclusive(data, l_Data, arrayLength);
+
+ //Avoid out-of-bound access
+ if(get_global_id(0) < N)
+ d_Buf[get_global_id(0)] = odata;
+}
+
+//Final step of large-array scan: combine basic inclusive scan with exclusive scan of top elements of input arrays
+__kernel __attribute__((reqd_work_group_size(WORKGROUP_SIZE, 1, 1)))
+void uniformUpdate(
+ __global uint4 *d_Data,
+ __global uint *d_Buf
+){
+ __local uint buf[1];
+
+ uint4 data4 = d_Data[get_global_id(0)];
+
+ if(get_local_id(0) == 0)
+ buf[0] = d_Buf[get_group_id(0)];
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+ data4 += (uint4)buf[0];
+ d_Data[get_global_id(0)] = data4;
+}