/* * sample is based on Apple's FFT example. * initial port to JOCL Copyright 2010 Michael Zucchi * * TODO: The execute functions may allocate/use temporary memory per call hence they are * neither thread safe nor multiple-queue safe. Perhaps some per-queue allocation * system would suffice. * TODO: The dynamic device-dependent variables should be dynamic and device-dependent and not * hardcoded. Where possible. * TODO: CPU support? */ package com.jogamp.opencl.demos.fft; import com.jogamp.opencl.CLBuffer; import com.jogamp.opencl.CLCommandQueue; import com.jogamp.opencl.CLContext; import com.jogamp.opencl.CLDevice; import com.jogamp.opencl.CLEventList; import com.jogamp.opencl.CLKernel; import com.jogamp.opencl.CLMemory; import com.jogamp.opencl.CLMemory.Mem; import com.jogamp.opencl.CLProgram; import java.io.OutputStream; import java.io.PrintStream; import java.nio.FloatBuffer; import java.util.LinkedList; /** * * @author notzed */ public class CLFFTPlan { private class CLFFTDim3 { int x; int y; int z; /* CLFFTDim3(int x, int y, int z) { this.x = x; this.y = y; this.z = z; }*/ CLFFTDim3(int[] size) { x = size[0]; y = size.length > 1 ? size[1] : 1; z = size.length > 2 ? size[2] : 1; } } private class WorkDimensions { int batchSize; long gWorkItems; long lWorkItems; public WorkDimensions(int batchSize, long gWorkItems, long lWorkItems) { this.batchSize = batchSize; this.gWorkItems = gWorkItems; this.lWorkItems = lWorkItems; } } private class fftPadding { int lMemSize; int offset; int midPad; public fftPadding(int lMemSize, int offset, int midPad) { this.lMemSize = lMemSize; this.offset = offset; this.midPad = midPad; } } class CLFFTKernelInfo { CLKernel kernel; String kernel_name; int lmem_size; int num_workgroups; int num_xforms_per_workgroup; int num_workitems_per_workgroup; CLFFTKernelDir dir; boolean in_place_possible; }; public enum CLFFTDirection { Forward { int value() { return -1; } }, Inverse { int value() { return 1; } }; abstract int value(); }; enum CLFFTKernelDir { X, Y, Z }; public enum CLFFTDataFormat { SplitComplexFormat, InterleavedComplexFormat, } // context in which fft resources are created and kernels are executed CLContext context; // size of signal CLFFTDim3 size; // dimension of transform ... must be either 1, 2 or 3 int dim; // data format ... must be either interleaved or plannar CLFFTDataFormat format; // string containing kernel source. Generated at runtime based on // size, dim, format and other parameters StringBuilder kernel_string; // CL program containing source and kernel this particular // size, dim, data format CLProgram program; // linked list of kernels which needs to be executed for this fft LinkedList kernel_list; // twist kernel for virtualizing fft of very large sizes that do not // fit in GPU global memory CLKernel twist_kernel; // flag indicating if temporary intermediate buffer is needed or not. // this depends on fft kernels being executed and if transform is // in-place or out-of-place. e.g. Local memory fft (say 1D 1024 ... // one that does not require global transpose do not need temporary buffer) // 2D 1024x1024 out-of-place fft however do require intermediate buffer. // If temp buffer is needed, its allocation is lazy i.e. its not allocated // until its needed boolean temp_buffer_needed; // Batch size is runtime parameter and size of temporary buffer (if needed) // depends on batch size. Allocation of temporary buffer is lazy i.e. its // only created when needed. Once its created at first call of clFFT_Executexxx // it is not allocated next time if next time clFFT_Executexxx is called with // batch size different than the first call. last_batch_size caches the last // batch size with which this plan is used so that we dont keep allocating/deallocating // temp buffer if same batch size is used again and again. int last_batch_size; // temporary buffer for interleaved plan CLMemory tempmemobj; // temporary buffer for planner plan. Only one of tempmemobj or // (tempmemobj_real, tempmemobj_imag) pair is valid (allocated) depending // data format of plan (plannar or interleaved) CLMemory tempmemobj_real, tempmemobj_imag; // Maximum size of signal for which local memory transposed based // fft is sufficient i.e. no global mem transpose (communication) // is needed int max_localmem_fft_size; // Maximum work items per work group allowed. This, along with max_radix below controls // maximum local memory being used by fft kernels of this plan. Set to 256 by default int max_work_item_per_workgroup; // Maximum base radix for local memory fft ... this controls the maximum register // space used by work items. Currently defaults to 16 int max_radix; // Device depended parameter that tells how many work-items need to be read consecutive // values to make sure global memory access by work-items of a work-group result in // coalesced memory access to utilize full bandwidth e.g. on NVidia tesla, this is 16 int min_mem_coalesce_width; // Number of local memory banks. This is used to geneate kernel with local memory // transposes with appropriate padding to avoid bank conflicts to local memory // e.g. on NVidia it is 16. int num_local_mem_banks; @SuppressWarnings("serial") public class InvalidContextException extends Exception { } /** * Create a new FFT plan. * * Use the matching executeInterleaved() or executePlanar() depending on the dataFormat specified. * @param context Context to create program in and get devices from. * @param sizes Array of sizes for each dimension. The length of array defines how many dimensions there are. * @param dataFormat Data format, InterleavedComplex (array of complex) or SplitComplex (separate planar arrays). * @throws InvalidContextException if we can't find any GPUs. */ public CLFFTPlan(CLContext context, int[] sizes, CLFFTDataFormat dataFormat) throws InvalidContextException { int i; // int err; boolean isPow2 = true; // String kString; // int num_devices; boolean gpu_found = false; CLDevice[] devices; // int ret_size; if (sizes.length < 1 || sizes.length > 3) { throw new IllegalArgumentException("Dimensions must be between 1 and 3"); } this.size = new CLFFTDim3(sizes); isPow2 |= (this.size.x != 0) && (((this.size.x - 1) & this.size.x) == 0); isPow2 |= (this.size.y != 0) && (((this.size.y - 1) & this.size.y) == 0); isPow2 |= (this.size.z != 0) && (((this.size.z - 1) & this.size.z) == 0); if (!isPow2) { throw new IllegalArgumentException("Sizes must be power of two"); } //if( (dim == FFT_1D && (size.y != 1 || size.z != 1)) || (dim == FFT_2D && size.z != 1) ) // ERR_MACRO(CL_INVALID_VALUE); this.context = context; //clRetainContext(context); //this.size = size; this.dim = sizes.length; this.format = dataFormat; //this.kernel_list = 0; //this.twist_kernel = 0; //this.program = 0; this.temp_buffer_needed = false; this.last_batch_size = 0; //this.tempmemobj = 0; //this.tempmemobj_real = 0; //this.tempmemobj_imag = 0; this.max_localmem_fft_size = 2048; this.max_work_item_per_workgroup = 256; this.max_radix = 16; this.min_mem_coalesce_width = 16; this.num_local_mem_banks = 16; boolean done = false; // this seems pretty shit, can't it tell this before building it? while (!done) { kernel_list = new LinkedList(); this.kernel_string = new StringBuilder(); getBlockConfigAndKernelString(); this.program = context.createProgram(kernel_string.toString()); devices = context.getDevices(); for (i = 0; i < devices.length; i++) { CLDevice dev = devices[i]; if (dev.getType() == CLDevice.Type.GPU) { gpu_found = true; program.build("-cl-mad-enable", dev); } } if (!gpu_found) { throw new InvalidContextException(); } createKernelList(); // we created program and kernels based on "some max work group size (default 256)" ... this work group size // may be larger than what kernel may execute with ... if thats the case we need to regenerate the kernel source // setting this as limit i.e max group size and rebuild. if (getPatchingRequired(devices)) { this.max_work_item_per_workgroup = (int) getMaxKernelWorkGroupSize(devices); release(); } else { done = true; } } } /** * Release system resources. */ public void release() { program.release(); } void allocateTemporaryBufferInterleaved(int batchSize) { if (temp_buffer_needed && last_batch_size != batchSize) { last_batch_size = batchSize; int tmpLength = size.x * size.y * size.z * batchSize * 2 * 4; // sizeof(float) if (tempmemobj != null) { tempmemobj.release(); } tempmemobj = context.createFloatBuffer(tmpLength, Mem.READ_WRITE); } } /** * Calculate FFT on interleaved complex data. * @param queue Command queue to put kernels into. * @param batchSize How many instances to calculate. Use 1 for a single FFT. * @param dir Direction of calculation, Forward or Inverse. * @param data_in Input buffer. * @param data_out Output buffer. May be the same as data_in for in-place transform. * @param condition Condition to wait for. NOT YET IMPLEMENTED. * @param event Event to wait for completion. NOT YET IMPLEMENTED. */ public void executeInterleaved(CLCommandQueue queue, int batchSize, CLFFTDirection dir, CLBuffer data_in, CLBuffer data_out, CLEventList condition, CLEventList event) { int s; if (format != CLFFTDataFormat.InterleavedComplexFormat) { throw new IllegalArgumentException(); } WorkDimensions wd; boolean inPlaceDone = false; boolean isInPlace = data_in == data_out; allocateTemporaryBufferInterleaved(batchSize); @SuppressWarnings("rawtypes") CLMemory[] memObj = new CLMemory[3]; memObj[0] = data_in; memObj[1] = data_out; memObj[2] = tempmemobj; int numKernels = kernel_list.size(); boolean numKernelsOdd = (numKernels & 1) != 0; int currRead = 0; int currWrite = 1; // at least one external dram shuffle (transpose) required if (temp_buffer_needed) { // in-place transform if (isInPlace) { inPlaceDone = false; currRead = 1; currWrite = 2; } else { currWrite = (numKernels & 1) == 1 ? 1 : 2; } for (CLFFTKernelInfo kernelInfo : kernel_list) { if (isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo.in_place_possible) { currWrite = currRead; inPlaceDone = true; } s = batchSize; wd = getKernelWorkDimensions(kernelInfo, s); kernelInfo.kernel.setArg(0, memObj[currRead]); kernelInfo.kernel.setArg(1, memObj[currWrite]); kernelInfo.kernel.setArg(2, dir.value()); kernelInfo.kernel.setArg(3, wd.batchSize); queue.put2DRangeKernel(kernelInfo.kernel, 0, 0, wd.gWorkItems, 1, wd.lWorkItems, 1); //queue.put1DRangeKernel(kernelInfo.kernel, 0, wd.gWorkItems, wd.lWorkItems); //System.out.printf("execute %s size %d,%d batch %d, dir %d, currread %d currwrite %d\size", kernelInfo.kernel_name, wd.gWorkItems, wd.lWorkItems, wd.batchSize, dir.value(), currRead, currWrite); currRead = (currWrite == 1) ? 1 : 2; currWrite = (currWrite == 1) ? 2 : 1; } } else { // no dram shuffle (transpose required) transform // all kernels can execute in-place. for (CLFFTKernelInfo kernelInfo : kernel_list) { { s = batchSize; wd = getKernelWorkDimensions(kernelInfo, s); kernelInfo.kernel.setArg(0, memObj[currRead]); kernelInfo.kernel.setArg(1, memObj[currWrite]); kernelInfo.kernel.setArg(2, dir.value()); kernelInfo.kernel.setArg(3, wd.batchSize); queue.put2DRangeKernel(kernelInfo.kernel, 0, 0, wd.gWorkItems, 1, wd.lWorkItems, 1); //System.out.printf("execute %s size %d,%d batch %d, currread %d currwrite %d\size", kernelInfo.kernel_name, wd.gWorkItems, wd.lWorkItems, wd.batchSize, currRead, currWrite); currRead = 1; currWrite = 1; } } } } void allocateTemporaryBufferPlanar(int batchSize) { if (temp_buffer_needed && last_batch_size != batchSize) { last_batch_size = batchSize; int tmpLength = size.x * size.y * size.z * batchSize * 4; //sizeof(cl_float); if (tempmemobj_real != null) { tempmemobj_real.release(); } if (tempmemobj_imag != null) { tempmemobj_imag.release(); } tempmemobj_real = context.createFloatBuffer(tmpLength, Mem.READ_WRITE); tempmemobj_imag = context.createFloatBuffer(tmpLength, Mem.READ_WRITE); } } /** * Calculate FFT of planar data. * @param queue Command queue to put kernels into. * @param batchSize Undocumented by original author. * @param dir Undocumented by original author. * @param data_in_real Undocumented by original author. * @param data_in_imag Undocumented by original author. * @param data_out_real Undocumented by original author. * @param data_out_imag Undocumented by original author. * @param contition Undocumented by original author. * @param event Undocumented by original author. */ public void executePlanar(CLCommandQueue queue, int batchSize, CLFFTDirection dir, CLBuffer data_in_real, CLBuffer data_in_imag, CLBuffer data_out_real, CLBuffer data_out_imag, CLEventList contition, CLEventList event) { int s; if (format != CLFFTDataFormat.SplitComplexFormat) { throw new IllegalArgumentException(); } // int err; WorkDimensions wd; boolean inPlaceDone = false; boolean isInPlace = ((data_in_real == data_out_real) && (data_in_imag == data_out_imag)); allocateTemporaryBufferPlanar(batchSize); @SuppressWarnings("rawtypes") CLMemory[] memObj_real = new CLMemory[3]; @SuppressWarnings("rawtypes") CLMemory[] memObj_imag = new CLMemory[3]; memObj_real[0] = data_in_real; memObj_real[1] = data_out_real; memObj_real[2] = tempmemobj_real; memObj_imag[0] = data_in_imag; memObj_imag[1] = data_out_imag; memObj_imag[2] = tempmemobj_imag; int numKernels = kernel_list.size(); boolean numKernelsOdd = (numKernels & 1) == 1; int currRead = 0; int currWrite = 1; // at least one external dram shuffle (transpose) required if (temp_buffer_needed) { // in-place transform if (isInPlace) { inPlaceDone = false; currRead = 1; currWrite = 2; } else { currWrite = (numKernels & 1) == 1 ? 1 : 2; } for (CLFFTKernelInfo kernelInfo : kernel_list) { if (isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo.in_place_possible) { currWrite = currRead; inPlaceDone = true; } s = batchSize; wd = getKernelWorkDimensions(kernelInfo, s); kernelInfo.kernel.setArg(0, memObj_real[currRead]); kernelInfo.kernel.setArg(1, memObj_imag[currRead]); kernelInfo.kernel.setArg(2, memObj_real[currWrite]); kernelInfo.kernel.setArg(3, memObj_imag[currWrite]); kernelInfo.kernel.setArg(4, dir.value()); kernelInfo.kernel.setArg(5, wd.batchSize); queue.put1DRangeKernel(kernelInfo.kernel, 0, wd.gWorkItems, wd.lWorkItems); currRead = (currWrite == 1) ? 1 : 2; currWrite = (currWrite == 1) ? 2 : 1; } } // no dram shuffle (transpose required) transform else { for (CLFFTKernelInfo kernelInfo : kernel_list) { s = batchSize; wd = getKernelWorkDimensions(kernelInfo, s); kernelInfo.kernel.setArg(0, memObj_real[currRead]); kernelInfo.kernel.setArg(1, memObj_imag[currRead]); kernelInfo.kernel.setArg(2, memObj_real[currWrite]); kernelInfo.kernel.setArg(3, memObj_imag[currWrite]); kernelInfo.kernel.setArg(4, dir.value()); kernelInfo.kernel.setArg(5, wd.batchSize); queue.put1DRangeKernel(kernelInfo.kernel, 0, wd.gWorkItems, wd.lWorkItems); currRead = 1; currWrite = 1; } } } /** * Dump the planner result to the output stream. * @param os if null, System.out is used. */ public void dumpPlan(OutputStream os) { PrintStream out = os == null ? System.out : new PrintStream(os); for (CLFFTKernelInfo kInfo : kernel_list) { int s = 1; WorkDimensions wd = getKernelWorkDimensions(kInfo, s); out.printf("Run kernel %s with global dim = {%d*BatchSize}, local dim={%d}\n", kInfo.kernel_name, wd.gWorkItems, wd.lWorkItems); } out.printf("%s\n", kernel_string.toString()); out.close(); } WorkDimensions getKernelWorkDimensions(CLFFTKernelInfo kernelInfo, int batchSize) { int lWorkItems = kernelInfo.num_workitems_per_workgroup; int numWorkGroups = kernelInfo.num_workgroups; int numXFormsPerWG = kernelInfo.num_xforms_per_workgroup; switch (kernelInfo.dir) { case X: batchSize *= (size.y * size.z); numWorkGroups = ((batchSize % numXFormsPerWG) != 0) ? (batchSize / numXFormsPerWG + 1) : (batchSize / numXFormsPerWG); numWorkGroups *= kernelInfo.num_workgroups; break; case Y: batchSize *= size.z; numWorkGroups *= batchSize; break; case Z: numWorkGroups *= batchSize; break; } return new WorkDimensions(batchSize, numWorkGroups * lWorkItems, lWorkItems); } /* * * Kernel building/customisation code follows * */ private void getBlockConfigAndKernelString() { this.temp_buffer_needed = false; this.kernel_string.append(baseKernels); if (this.format == CLFFTDataFormat.SplitComplexFormat) { this.kernel_string.append(twistKernelPlannar); } else { this.kernel_string.append(twistKernelInterleaved); } switch (this.dim) { case 1: FFT1D(CLFFTKernelDir.X); break; case 2: FFT1D(CLFFTKernelDir.X); FFT1D(CLFFTKernelDir.Y); break; case 3: FFT1D(CLFFTKernelDir.X); FFT1D(CLFFTKernelDir.Y); FFT1D(CLFFTKernelDir.Z); break; default: return; } this.temp_buffer_needed = false; for (CLFFTKernelInfo kInfo : this.kernel_list) { this.temp_buffer_needed |= !kInfo.in_place_possible; } } private void createKernelList() { // CLFFTKernelInfo kern; for (CLFFTKernelInfo kinfo : this.kernel_list) { kinfo.kernel = program.createCLKernel(kinfo.kernel_name); } if (format == CLFFTDataFormat.SplitComplexFormat) { twist_kernel = program.createCLKernel("clFFT_1DTwistSplit"); } else { twist_kernel = program.createCLKernel("clFFT_1DTwistInterleaved"); } } private boolean getPatchingRequired(CLDevice[] devices) { int i; for (i = 0; i < devices.length; i++) { for (CLFFTKernelInfo kInfo : kernel_list) { if (kInfo.kernel.getWorkGroupSize(devices[i]) < kInfo.num_workitems_per_workgroup) { return true; } } } return false; } long getMaxKernelWorkGroupSize(CLDevice[] devices) { long max_wg_size = Integer.MAX_VALUE; int i; for (i = 0; i < devices.length; i++) { for (CLFFTKernelInfo kInfo : kernel_list) { long wg_size = kInfo.kernel.getWorkGroupSize(devices[i]); if (max_wg_size > wg_size) { max_wg_size = wg_size; } } } return max_wg_size; } int log2(int x) { return 32 - Integer.numberOfLeadingZeros(x - 1); } // For any size, this function decomposes size into factors for loacal memory tranpose // based fft. Factors (radices) are sorted such that the first one (radixArray[0]) // is the largest. This base radix determines the number of registers used by each // work item and product of remaining radices determine the size of work group needed. // To make things concrete with and example, suppose size = 1024. It is decomposed into // 1024 = 16 x 16 x 4. Hence kernel uses float2 a[16], for local in-register fft and // needs 16 x 4 = 64 work items per work group. So kernel first performance 64 length // 16 ffts (64 work items working in parallel) following by transpose using local // memory followed by again 64 length 16 ffts followed by transpose using local memory // followed by 256 length 4 ffts. For the last step since with size of work group is // 64 and each work item can array for 16 values, 64 work items can compute 256 length // 4 ffts by each work item computing 4 length 4 ffts. // Similarly for size = 2048 = 8 x 8 x 8 x 4, each work group has 8 x 8 x 4 = 256 work // iterms which each computes 256 (in-parallel) length 8 ffts in-register, followed // by transpose using local memory, followed by 256 length 8 in-register ffts, followed // by transpose using local memory, followed by 256 length 8 in-register ffts, followed // by transpose using local memory, followed by 512 length 4 in-register ffts. Again, // for the last step, each work item computes two length 4 in-register ffts and thus // 256 work items are needed to compute all 512 ffts. // For size = 32 = 8 x 4, 4 work items first compute 4 in-register // lenth 8 ffts, followed by transpose using local memory followed by 8 in-register // length 4 ffts, where each work item computes two length 4 ffts thus 4 work items // can compute 8 length 4 ffts. However if work group size of say 64 is choosen, // each work group can compute 64/ 4 = 16 size 32 ffts (batched transform). // Users can play with these parameters to figure what gives best performance on // their particular device i.e. some device have less register space thus using // smaller base radix can avoid spilling ... some has small local memory thus // using smaller work group size may be required etc int getRadixArray(int n, int[] radixArray, int maxRadix) { if (maxRadix > 1) { maxRadix = Math.min(n, maxRadix); int cnt = 0; while (n > maxRadix) { radixArray[cnt++] = maxRadix; n /= maxRadix; } radixArray[cnt++] = n; return cnt; } switch (n) { case 2: radixArray[0] = 2; return 1; case 4: radixArray[0] = 4; return 1; case 8: radixArray[0] = 8; return 1; case 16: radixArray[0] = 8; radixArray[1] = 2; return 2; case 32: radixArray[0] = 8; radixArray[1] = 4; return 2; case 64: radixArray[0] = 8; radixArray[1] = 8; return 2; case 128: radixArray[0] = 8; radixArray[1] = 4; radixArray[2] = 4; return 3; case 256: radixArray[0] = 4; radixArray[1] = 4; radixArray[2] = 4; radixArray[3] = 4; return 4; case 512: radixArray[0] = 8; radixArray[1] = 8; radixArray[2] = 8; return 3; case 1024: radixArray[0] = 16; radixArray[1] = 16; radixArray[2] = 4; return 3; case 2048: radixArray[0] = 8; radixArray[1] = 8; radixArray[2] = 8; radixArray[3] = 4; return 4; default: return 0; } } void insertHeader(StringBuilder kernelString, String kernelName, CLFFTDataFormat dataFormat) { if (dataFormat == CLFFTPlan.CLFFTDataFormat.SplitComplexFormat) { kernelString.append("__kernel void ").append(kernelName).append("(__global float *in_real, __global float *in_imag, __global float *out_real, __global float *out_imag, int dir, int S)\n"); } else { kernelString.append("__kernel void ").append(kernelName).append("(__global float2 *in, __global float2 *out, int dir, int S)\n"); } } void insertVariables(StringBuilder kStream, int maxRadix) { kStream.append(" int i, j, r, indexIn, indexOut, index, tid, bNum, xNum, k, l;\n"); kStream.append(" int s, ii, jj, offset;\n"); kStream.append(" float2 w;\n"); kStream.append(" float ang, angf, ang1;\n"); kStream.append(" __local float *lMemStore, *lMemLoad;\n"); kStream.append(" float2 a[").append(maxRadix).append("];\n"); kStream.append(" int lId = get_local_id( 0 );\n"); kStream.append(" int groupId = get_group_id( 0 );\n"); } void formattedLoad(StringBuilder kernelString, int aIndex, int gIndex, CLFFTDataFormat dataFormat) { if (dataFormat == CLFFTDataFormat.InterleavedComplexFormat) { kernelString.append(" a[").append(aIndex).append("] = in[").append(gIndex).append("];\n"); } else { kernelString.append(" a[").append(aIndex).append("].x = in_real[").append(gIndex).append("];\n"); kernelString.append(" a[").append(aIndex).append("].y = in_imag[").append(gIndex).append("];\n"); } } void formattedStore(StringBuilder kernelString, int aIndex, int gIndex, CLFFTDataFormat dataFormat) { if (dataFormat == CLFFTDataFormat.InterleavedComplexFormat) { kernelString.append(" out[").append(gIndex).append("] = a[").append(aIndex).append("];\n"); } else { kernelString.append(" out_real[").append(gIndex).append("] = a[").append(aIndex).append("].x;\n"); kernelString.append(" out_imag[").append(gIndex).append("] = a[").append(aIndex).append("].y;\n"); } } int insertGlobalLoadsAndTranspose(StringBuilder kernelString, int N, int numWorkItemsPerXForm, int numXFormsPerWG, int R0, int mem_coalesce_width, CLFFTDataFormat dataFormat) { int log2NumWorkItemsPerXForm = log2(numWorkItemsPerXForm); int groupSize = numWorkItemsPerXForm * numXFormsPerWG; int i, j; int lMemSize = 0; if (numXFormsPerWG > 1) { kernelString.append(" s = S & ").append(numXFormsPerWG - 1).append(";\n"); } if (numWorkItemsPerXForm >= mem_coalesce_width) { if (numXFormsPerWG > 1) { kernelString.append(" ii = lId & ").append(numWorkItemsPerXForm - 1).append(";\n"); kernelString.append(" jj = lId >> ").append(log2NumWorkItemsPerXForm).append(";\n"); kernelString.append(" if( !s || (groupId < get_num_groups(0)-1) || (jj < s) ) {\n"); kernelString.append(" offset = mad24( mad24(groupId, ").append(numXFormsPerWG).append(", jj), ").append(N).append(", ii );\n"); if (dataFormat == CLFFTDataFormat.InterleavedComplexFormat) { kernelString.append(" in += offset;\n"); kernelString.append(" out += offset;\n"); } else { kernelString.append(" in_real += offset;\n"); kernelString.append(" in_imag += offset;\n"); kernelString.append(" out_real += offset;\n"); kernelString.append(" out_imag += offset;\n"); } for (i = 0; i < R0; i++) { formattedLoad(kernelString, i, i * numWorkItemsPerXForm, dataFormat); } kernelString.append(" }\n"); } else { kernelString.append(" ii = lId;\n"); kernelString.append(" jj = 0;\n"); kernelString.append(" offset = mad24(groupId, ").append(N).append(", ii);\n"); if (dataFormat == CLFFTDataFormat.InterleavedComplexFormat) { kernelString.append(" in += offset;\n"); kernelString.append(" out += offset;\n"); } else { kernelString.append(" in_real += offset;\n"); kernelString.append(" in_imag += offset;\n"); kernelString.append(" out_real += offset;\n"); kernelString.append(" out_imag += offset;\n"); } for (i = 0; i < R0; i++) { formattedLoad(kernelString, i, i * numWorkItemsPerXForm, dataFormat); } } } else if (N >= mem_coalesce_width) { int numInnerIter = N / mem_coalesce_width; int numOuterIter = numXFormsPerWG / (groupSize / mem_coalesce_width); kernelString.append(" ii = lId & ").append(mem_coalesce_width - 1).append(";\n"); kernelString.append(" jj = lId >> ").append(log2(mem_coalesce_width)).append(";\n"); kernelString.append(" lMemStore = sMem + mad24( jj, ").append(N + numWorkItemsPerXForm).append(", ii );\n"); kernelString.append(" offset = mad24( groupId, ").append(numXFormsPerWG).append(", jj);\n"); kernelString.append(" offset = mad24( offset, ").append(N).append(", ii );\n"); if (dataFormat == CLFFTDataFormat.InterleavedComplexFormat) { kernelString.append(" in += offset;\n"); kernelString.append(" out += offset;\n"); } else { kernelString.append(" in_real += offset;\n"); kernelString.append(" in_imag += offset;\n"); kernelString.append(" out_real += offset;\n"); kernelString.append(" out_imag += offset;\n"); } kernelString.append("if((groupId == get_num_groups(0)-1) && s) {\n"); for (i = 0; i < numOuterIter; i++) { kernelString.append(" if( jj < s ) {\n"); for (j = 0; j < numInnerIter; j++) { formattedLoad(kernelString, i * numInnerIter + j, j * mem_coalesce_width + i * (groupSize / mem_coalesce_width) * N, dataFormat); } kernelString.append(" }\n"); if (i != numOuterIter - 1) { kernelString.append(" jj += ").append(groupSize / mem_coalesce_width).append(";\n"); } } kernelString.append("}\n "); kernelString.append("else {\n"); for (i = 0; i < numOuterIter; i++) { for (j = 0; j < numInnerIter; j++) { formattedLoad(kernelString, i * numInnerIter + j, j * mem_coalesce_width + i * (groupSize / mem_coalesce_width) * N, dataFormat); } } kernelString.append("}\n"); kernelString.append(" ii = lId & ").append(numWorkItemsPerXForm - 1).append(";\n"); kernelString.append(" jj = lId >> ").append(log2NumWorkItemsPerXForm).append(";\n"); kernelString.append(" lMemLoad = sMem + mad24( jj, ").append(N + numWorkItemsPerXForm).append(", ii);\n"); for (i = 0; i < numOuterIter; i++) { for (j = 0; j < numInnerIter; j++) { kernelString.append(" lMemStore[").append(j * mem_coalesce_width + i * (groupSize / mem_coalesce_width) * (N + numWorkItemsPerXForm)).append("] = a[").append(i * numInnerIter + j).append("].x;\n"); } } kernelString.append(" barrier( CLK_LOCAL_MEM_FENCE );\n"); for (i = 0; i < R0; i++) { kernelString.append(" a[").append(i).append("].x = lMemLoad[").append(i * numWorkItemsPerXForm).append("];\n"); } kernelString.append(" barrier( CLK_LOCAL_MEM_FENCE );\n"); for (i = 0; i < numOuterIter; i++) { for (j = 0; j < numInnerIter; j++) { kernelString.append(" lMemStore[").append(j * mem_coalesce_width + i * (groupSize / mem_coalesce_width) * (N + numWorkItemsPerXForm)).append("] = a[").append(i * numInnerIter + j).append("].y;\n"); } } kernelString.append(" barrier( CLK_LOCAL_MEM_FENCE );\n"); for (i = 0; i < R0; i++) { kernelString.append(" a[").append(i).append("].y = lMemLoad[").append(i * numWorkItemsPerXForm).append("];\n"); } kernelString.append(" barrier( CLK_LOCAL_MEM_FENCE );\n"); lMemSize = (N + numWorkItemsPerXForm) * numXFormsPerWG; } else { kernelString.append(" offset = mad24( groupId, ").append(N * numXFormsPerWG).append(", lId );\n"); if (dataFormat == CLFFTDataFormat.InterleavedComplexFormat) { kernelString.append(" in += offset;\n"); kernelString.append(" out += offset;\n"); } else { kernelString.append(" in_real += offset;\n"); kernelString.append(" in_imag += offset;\n"); kernelString.append(" out_real += offset;\n"); kernelString.append(" out_imag += offset;\n"); } kernelString.append(" ii = lId & ").append(N - 1).append(";\n"); kernelString.append(" jj = lId >> ").append(log2(N)).append(";\n"); kernelString.append(" lMemStore = sMem + mad24( jj, ").append(N + numWorkItemsPerXForm).append(", ii );\n"); kernelString.append("if((groupId == get_num_groups(0)-1) && s) {\n"); for (i = 0; i < R0; i++) { kernelString.append(" if(jj < s )\n"); formattedLoad(kernelString, i, i * groupSize, dataFormat); if (i != R0 - 1) { kernelString.append(" jj += ").append(groupSize / N).append(";\n"); } } kernelString.append("}\n"); kernelString.append("else {\n"); for (i = 0; i < R0; i++) { formattedLoad(kernelString, i, i * groupSize, dataFormat); } kernelString.append("}\n"); if (numWorkItemsPerXForm > 1) { kernelString.append(" ii = lId & ").append(numWorkItemsPerXForm - 1).append(";\n"); kernelString.append(" jj = lId >> ").append(log2NumWorkItemsPerXForm).append(";\n"); kernelString.append(" lMemLoad = sMem + mad24( jj, ").append(N + numWorkItemsPerXForm).append(", ii );\n"); } else { kernelString.append(" ii = 0;\n"); kernelString.append(" jj = lId;\n"); kernelString.append(" lMemLoad = sMem + mul24( jj, ").append(N + numWorkItemsPerXForm).append(");\n"); } for (i = 0; i < R0; i++) { kernelString.append(" lMemStore[").append(i * (groupSize / N) * (N + numWorkItemsPerXForm)).append("] = a[").append(i).append("].x;\n"); } kernelString.append(" barrier( CLK_LOCAL_MEM_FENCE );\n"); for (i = 0; i < R0; i++) { kernelString.append(" a[").append(i).append("].x = lMemLoad[").append(i * numWorkItemsPerXForm).append("];\n"); } kernelString.append(" barrier( CLK_LOCAL_MEM_FENCE );\n"); for (i = 0; i < R0; i++) { kernelString.append(" lMemStore[").append(i * (groupSize / N) * (N + numWorkItemsPerXForm)).append("] = a[").append(i).append("].y;\n"); } kernelString.append(" barrier( CLK_LOCAL_MEM_FENCE );\n"); for (i = 0; i < R0; i++) { kernelString.append(" a[").append(i).append("].y = lMemLoad[").append(i * numWorkItemsPerXForm).append("];\n"); } kernelString.append(" barrier( CLK_LOCAL_MEM_FENCE );\n"); lMemSize = (N + numWorkItemsPerXForm) * numXFormsPerWG; } return lMemSize; } int insertGlobalStoresAndTranspose(StringBuilder kernelString, int N, int maxRadix, int Nr, int numWorkItemsPerXForm, int numXFormsPerWG, int mem_coalesce_width, CLFFTDataFormat dataFormat) { int groupSize = numWorkItemsPerXForm * numXFormsPerWG; int i, j, k, ind; int lMemSize = 0; int numIter = maxRadix / Nr; // String indent = ""; if (numWorkItemsPerXForm >= mem_coalesce_width) { if (numXFormsPerWG > 1) { kernelString.append(" if( !s || (groupId < get_num_groups(0)-1) || (jj < s) ) {\n"); // indent = (" "); } for (i = 0; i < maxRadix; i++) { j = i % numIter; k = i / numIter; ind = j * Nr + k; formattedStore(kernelString, ind, i * numWorkItemsPerXForm, dataFormat); } if (numXFormsPerWG > 1) { kernelString.append(" }\n"); } } else if (N >= mem_coalesce_width) { int numInnerIter = N / mem_coalesce_width; int numOuterIter = numXFormsPerWG / (groupSize / mem_coalesce_width); kernelString.append(" lMemLoad = sMem + mad24( jj, ").append(N + numWorkItemsPerXForm).append(", ii );\n"); kernelString.append(" ii = lId & ").append(mem_coalesce_width - 1).append(";\n"); kernelString.append(" jj = lId >> ").append(log2(mem_coalesce_width)).append(";\n"); kernelString.append(" lMemStore = sMem + mad24( jj,").append(N + numWorkItemsPerXForm).append(", ii );\n"); for (i = 0; i < maxRadix; i++) { j = i % numIter; k = i / numIter; ind = j * Nr + k; kernelString.append(" lMemLoad[").append(i * numWorkItemsPerXForm).append("] = a[").append(ind).append("].x;\n"); } kernelString.append(" barrier( CLK_LOCAL_MEM_FENCE );\n"); for (i = 0; i < numOuterIter; i++) { for (j = 0; j < numInnerIter; j++) { kernelString.append(" a[").append(i * numInnerIter + j).append("].x = lMemStore[").append(j * mem_coalesce_width + i * (groupSize / mem_coalesce_width) * (N + numWorkItemsPerXForm)).append("];\n"); } } kernelString.append(" barrier( CLK_LOCAL_MEM_FENCE );\n"); for (i = 0; i < maxRadix; i++) { j = i % numIter; k = i / numIter; ind = j * Nr + k; kernelString.append(" lMemLoad[").append(i * numWorkItemsPerXForm).append("] = a[").append(ind).append("].y;\n"); } kernelString.append(" barrier( CLK_LOCAL_MEM_FENCE );\n"); for (i = 0; i < numOuterIter; i++) { for (j = 0; j < numInnerIter; j++) { kernelString.append(" a[").append(i * numInnerIter + j).append("].y = lMemStore[").append(j * mem_coalesce_width + i * (groupSize / mem_coalesce_width) * (N + numWorkItemsPerXForm)).append("];\n"); } } kernelString.append(" barrier( CLK_LOCAL_MEM_FENCE );\n"); kernelString.append("if((groupId == get_num_groups(0)-1) && s) {\n"); for (i = 0; i < numOuterIter; i++) { kernelString.append(" if( jj < s ) {\n"); for (j = 0; j < numInnerIter; j++) { formattedStore(kernelString, i * numInnerIter + j, j * mem_coalesce_width + i * (groupSize / mem_coalesce_width) * N, dataFormat); } kernelString.append(" }\n"); if (i != numOuterIter - 1) { kernelString.append(" jj += ").append(groupSize / mem_coalesce_width).append(";\n"); } } kernelString.append("}\n"); kernelString.append("else {\n"); for (i = 0; i < numOuterIter; i++) { for (j = 0; j < numInnerIter; j++) { formattedStore(kernelString, i * numInnerIter + j, j * mem_coalesce_width + i * (groupSize / mem_coalesce_width) * N, dataFormat); } } kernelString.append("}\n"); lMemSize = (N + numWorkItemsPerXForm) * numXFormsPerWG; } else { kernelString.append(" lMemLoad = sMem + mad24( jj,").append(N + numWorkItemsPerXForm).append(", ii );\n"); kernelString.append(" ii = lId & ").append(N - 1).append(";\n"); kernelString.append(" jj = lId >> ").append(log2(N)).append(";\n"); kernelString.append(" lMemStore = sMem + mad24( jj,").append(N + numWorkItemsPerXForm).append(", ii );\n"); for (i = 0; i < maxRadix; i++) { j = i % numIter; k = i / numIter; ind = j * Nr + k; kernelString.append(" lMemLoad[").append(i * numWorkItemsPerXForm).append("] = a[").append(ind).append("].x;\n"); } kernelString.append(" barrier( CLK_LOCAL_MEM_FENCE );\n"); for (i = 0; i < maxRadix; i++) { kernelString.append(" a[").append(i).append("].x = lMemStore[").append(i * (groupSize / N) * (N + numWorkItemsPerXForm)).append("];\n"); } kernelString.append(" barrier( CLK_LOCAL_MEM_FENCE );\n"); for (i = 0; i < maxRadix; i++) { j = i % numIter; k = i / numIter; ind = j * Nr + k; kernelString.append(" lMemLoad[").append(i * numWorkItemsPerXForm).append("] = a[").append(ind).append("].y;\n"); } kernelString.append(" barrier( CLK_LOCAL_MEM_FENCE );\n"); for (i = 0; i < maxRadix; i++) { kernelString.append(" a[").append(i).append("].y = lMemStore[").append(i * (groupSize / N) * (N + numWorkItemsPerXForm)).append("];\n"); } kernelString.append(" barrier( CLK_LOCAL_MEM_FENCE );\n"); kernelString.append("if((groupId == get_num_groups(0)-1) && s) {\n"); for (i = 0; i < maxRadix; i++) { kernelString.append(" if(jj < s ) {\n"); formattedStore(kernelString, i, i * groupSize, dataFormat); kernelString.append(" }\n"); if (i != maxRadix - 1) { kernelString.append(" jj +=").append(groupSize / N).append(";\n"); } } kernelString.append("}\n"); kernelString.append("else {\n"); for (i = 0; i < maxRadix; i++) { formattedStore(kernelString, i, i * groupSize, dataFormat); } kernelString.append("}\n"); lMemSize = (N + numWorkItemsPerXForm) * numXFormsPerWG; } return lMemSize; } void insertfftKernel(StringBuilder kernelString, int Nr, int numIter) { int i; for (i = 0; i < numIter; i++) { kernelString.append(" fftKernel").append(Nr).append("(a+").append(i * Nr).append(", dir);\n"); } } void insertTwiddleKernel(StringBuilder kernelString, int Nr, int numIter, int Nprev, int len, int numWorkItemsPerXForm) { int z, k; int logNPrev = log2(Nprev); for (z = 0; z < numIter; z++) { if (z == 0) { if (Nprev > 1) { kernelString.append(" angf = (float) (ii >> ").append(logNPrev).append(");\n"); } else { kernelString.append(" angf = (float) ii;\n"); } } else { if (Nprev > 1) { kernelString.append(" angf = (float) ((").append(z * numWorkItemsPerXForm).append(" + ii) >>").append(logNPrev).append(");\n"); } else { kernelString.append(" angf = (float) (").append(z * numWorkItemsPerXForm).append(" + ii);\n"); } } for (k = 1; k < Nr; k++) { int ind = z * Nr + k; //float fac = (float) (2.0 * M_PI * (double) k / (double) len); kernelString.append(" ang = dir * ( 2.0f * M_PI * ").append(k).append(".0f / ").append(len).append(".0f )").append(" * angf;\n"); kernelString.append(" w = (float2)(native_cos(ang), native_sin(ang));\n"); kernelString.append(" a[").append(ind).append("] = complexMul(a[").append(ind).append("], w);\n"); } } } fftPadding getPadding(int numWorkItemsPerXForm, int Nprev, int numWorkItemsReq, int numXFormsPerWG, int Nr, int numBanks) { int offset, midPad; if ((numWorkItemsPerXForm <= Nprev) || (Nprev >= numBanks)) { offset = 0; } else { int numRowsReq = ((numWorkItemsPerXForm < numBanks) ? numWorkItemsPerXForm : numBanks) / Nprev; int numColsReq = 1; if (numRowsReq > Nr) { numColsReq = numRowsReq / Nr; } numColsReq = Nprev * numColsReq; offset = numColsReq; } if (numWorkItemsPerXForm >= numBanks || numXFormsPerWG == 1) { midPad = 0; } else { int bankNum = ((numWorkItemsReq + offset) * Nr) & (numBanks - 1); if (bankNum >= numWorkItemsPerXForm) { midPad = 0; } else { midPad = numWorkItemsPerXForm - bankNum; } } int lMemSize = (numWorkItemsReq + offset) * Nr * numXFormsPerWG + midPad * (numXFormsPerWG - 1); return new fftPadding(lMemSize, offset, midPad); } void insertLocalStores(StringBuilder kernelString, int numIter, int Nr, int numWorkItemsPerXForm, int numWorkItemsReq, int offset, String comp) { int z, k; for (z = 0; z < numIter; z++) { for (k = 0; k < Nr; k++) { int index = k * (numWorkItemsReq + offset) + z * numWorkItemsPerXForm; kernelString.append(" lMemStore[").append(index).append("] = a[").append(z * Nr + k).append("].").append(comp).append(";\n"); } } kernelString.append(" barrier(CLK_LOCAL_MEM_FENCE);\n"); } void insertLocalLoads(StringBuilder kernelString, int n, int Nr, int Nrn, int Nprev, int Ncurr, int numWorkItemsPerXForm, int numWorkItemsReq, int offset, String comp) { int numWorkItemsReqN = n / Nrn; int interBlockHNum = Math.max(Nprev / numWorkItemsPerXForm, 1); int interBlockHStride = numWorkItemsPerXForm; int vertWidth = Math.max(numWorkItemsPerXForm / Nprev, 1); vertWidth = Math.min(vertWidth, Nr); int vertNum = Nr / vertWidth; int vertStride = (n / Nr + offset) * vertWidth; int iter = Math.max(numWorkItemsReqN / numWorkItemsPerXForm, 1); int intraBlockHStride = (numWorkItemsPerXForm / (Nprev * Nr)) > 1 ? (numWorkItemsPerXForm / (Nprev * Nr)) : 1; intraBlockHStride *= Nprev; int stride = numWorkItemsReq / Nrn; int i; for (i = 0; i < iter; i++) { int ii = i / (interBlockHNum * vertNum); int zz = i % (interBlockHNum * vertNum); int jj = zz % interBlockHNum; int kk = zz / interBlockHNum; int z; for (z = 0; z < Nrn; z++) { int st = kk * vertStride + jj * interBlockHStride + ii * intraBlockHStride + z * stride; kernelString.append(" a[").append(i * Nrn + z).append("].").append(comp).append(" = lMemLoad[").append(st).append("];\n"); } } kernelString.append(" barrier(CLK_LOCAL_MEM_FENCE);\n"); } void insertLocalLoadIndexArithmatic(StringBuilder kernelString, int Nprev, int Nr, int numWorkItemsReq, int numWorkItemsPerXForm, int numXFormsPerWG, int offset, int midPad) { int Ncurr = Nprev * Nr; int logNcurr = log2(Ncurr); int logNprev = log2(Nprev); int incr = (numWorkItemsReq + offset) * Nr + midPad; if (Ncurr < numWorkItemsPerXForm) { if (Nprev == 1) { kernelString.append(" j = ii & ").append(Ncurr - 1).append(";\n"); } else { kernelString.append(" j = (ii & ").append(Ncurr - 1).append(") >> ").append(logNprev).append(";\n"); } if (Nprev == 1) { kernelString.append(" i = ii >> ").append(logNcurr).append(";\n"); } else { kernelString.append(" i = mad24(ii >> ").append(logNcurr).append(", ").append(Nprev).append(", ii & ").append(Nprev - 1).append(");\n"); } } else { if (Nprev == 1) { kernelString.append(" j = ii;\n"); } else { kernelString.append(" j = ii >> ").append(logNprev).append(";\n"); } if (Nprev == 1) { kernelString.append(" i = 0;\n"); } else { kernelString.append(" i = ii & ").append(Nprev - 1).append(";\n"); } } if (numXFormsPerWG > 1) { kernelString.append(" i = mad24(jj, ").append(incr).append(", i);\n"); } kernelString.append(" lMemLoad = sMem + mad24(j, ").append(numWorkItemsReq + offset).append(", i);\n"); } void insertLocalStoreIndexArithmatic(StringBuilder kernelString, int numWorkItemsReq, int numXFormsPerWG, int Nr, int offset, int midPad) { if (numXFormsPerWG == 1) { kernelString.append(" lMemStore = sMem + ii;\n"); } else { kernelString.append(" lMemStore = sMem + mad24(jj, ").append((numWorkItemsReq + offset) * Nr + midPad).append(", ii);\n"); } } void createLocalMemfftKernelString() { int[] radixArray = new int[10]; int numRadix; int n = this.size.x; assert (n <= this.max_work_item_per_workgroup * this.max_radix); numRadix = getRadixArray(n, radixArray, 0); assert (numRadix > 0); if (n / radixArray[0] > this.max_work_item_per_workgroup) { numRadix = getRadixArray(n, radixArray, this.max_radix); } assert (radixArray[0] <= this.max_radix); assert (n / radixArray[0] <= this.max_work_item_per_workgroup); int tmpLen = 1; int i; for (i = 0; i < numRadix; i++) { assert ((radixArray[i] != 0) && !(((radixArray[i] - 1) != 0) & (radixArray[i] != 0))); tmpLen *= radixArray[i]; } assert (tmpLen == n); //int offset, midPad; StringBuilder localString = new StringBuilder(); String kernelName; CLFFTDataFormat dataFormat = this.format; StringBuilder kernelString = this.kernel_string; int kCount = kernel_list.size(); kernelName = "fft" + (kCount); CLFFTKernelInfo kInfo = new CLFFTKernelInfo(); kernel_list.add(kInfo); //kInfo.kernel = null; //kInfo.lmem_size = 0; //kInfo.num_workgroups = 0; //kInfo.num_workitems_per_workgroup = 0; kInfo.dir = CLFFTKernelDir.X; kInfo.in_place_possible = true; //kInfo.next = null; kInfo.kernel_name = kernelName; int numWorkItemsPerXForm = n / radixArray[0]; int numWorkItemsPerWG = numWorkItemsPerXForm <= 64 ? 64 : numWorkItemsPerXForm; assert (numWorkItemsPerWG <= this.max_work_item_per_workgroup); int numXFormsPerWG = numWorkItemsPerWG / numWorkItemsPerXForm; kInfo.num_workgroups = 1; kInfo.num_xforms_per_workgroup = numXFormsPerWG; kInfo.num_workitems_per_workgroup = numWorkItemsPerWG; int[] N = radixArray; int maxRadix = N[0]; int lMemSize = 0; insertVariables(localString, maxRadix); lMemSize = insertGlobalLoadsAndTranspose(localString, n, numWorkItemsPerXForm, numXFormsPerWG, maxRadix, this.min_mem_coalesce_width, dataFormat); kInfo.lmem_size = (lMemSize > kInfo.lmem_size) ? lMemSize : kInfo.lmem_size; String xcomp = "x"; String ycomp = "y"; int Nprev = 1; int len = n; int r; for (r = 0; r < numRadix; r++) { int numIter = N[0] / N[r]; int numWorkItemsReq = n / N[r]; int Ncurr = Nprev * N[r]; insertfftKernel(localString, N[r], numIter); if (r < (numRadix - 1)) { fftPadding pad; insertTwiddleKernel(localString, N[r], numIter, Nprev, len, numWorkItemsPerXForm); pad = getPadding(numWorkItemsPerXForm, Nprev, numWorkItemsReq, numXFormsPerWG, N[r], this.num_local_mem_banks); kInfo.lmem_size = (pad.lMemSize > kInfo.lmem_size) ? pad.lMemSize : kInfo.lmem_size; insertLocalStoreIndexArithmatic(localString, numWorkItemsReq, numXFormsPerWG, N[r], pad.offset, pad.midPad); insertLocalLoadIndexArithmatic(localString, Nprev, N[r], numWorkItemsReq, numWorkItemsPerXForm, numXFormsPerWG, pad.offset, pad.midPad); insertLocalStores(localString, numIter, N[r], numWorkItemsPerXForm, numWorkItemsReq, pad.offset, xcomp); insertLocalLoads(localString, n, N[r], N[r + 1], Nprev, Ncurr, numWorkItemsPerXForm, numWorkItemsReq, pad.offset, xcomp); insertLocalStores(localString, numIter, N[r], numWorkItemsPerXForm, numWorkItemsReq, pad.offset, ycomp); insertLocalLoads(localString, n, N[r], N[r + 1], Nprev, Ncurr, numWorkItemsPerXForm, numWorkItemsReq, pad.offset, ycomp); Nprev = Ncurr; len = len / N[r]; } } lMemSize = insertGlobalStoresAndTranspose(localString, n, maxRadix, N[numRadix - 1], numWorkItemsPerXForm, numXFormsPerWG, this.min_mem_coalesce_width, dataFormat); kInfo.lmem_size = (lMemSize > kInfo.lmem_size) ? lMemSize : kInfo.lmem_size; insertHeader(kernelString, kernelName, dataFormat); kernelString.append("{\n"); if (kInfo.lmem_size > 0) { kernelString.append(" __local float sMem[").append(kInfo.lmem_size).append("];\n"); } kernelString.append(localString); kernelString.append("}\n"); } // For size larger than what can be computed using local memory fft, global transposes // multiple kernel launces is needed. For these sizes, size can be decomposed using // much larger base radices i.e. say size = 262144 = 128 x 64 x 32. Thus three kernel // launches will be needed, first computing 64 x 32, length 128 ffts, second computing // 128 x 32 length 64 ffts, and finally a kernel computing 128 x 64 length 32 ffts. // Each of these base radices can futher be divided into factors so that each of these // base ffts can be computed within one kernel launch using in-register ffts and local // memory transposes i.e for the first kernel above which computes 64 x 32 ffts on length // 128, 128 can be decomposed into 128 = 16 x 8 i.e. 8 work items can compute 8 length // 16 ffts followed by transpose using local memory followed by each of these eight // work items computing 2 length 8 ffts thus computing 16 length 8 ffts in total. This // means only 8 work items are needed for computing one length 128 fft. If we choose // work group size of say 64, we can compute 64/8 = 8 length 128 ffts within one // work group. Since we need to compute 64 x 32 length 128 ffts in first kernel, this // means we need to launch 64 x 32 / 8 = 256 work groups with 64 work items in each // work group where each work group is computing 8 length 128 ffts where each length // 128 fft is computed by 8 work items. Same logic can be applied to other two kernels // in this example. Users can play with difference base radices and difference // decompositions of base radices to generates different kernels and see which gives // best performance. Following function is just fixed to use 128 as base radix int getGlobalRadixInfo(int n, int[] radix, int[] R1, int[] R2) { int baseRadix = Math.min(n, 128); int numR = 0; int N = n; while (N > baseRadix) { N /= baseRadix; numR++; } for (int i = 0; i < numR; i++) { radix[i] = baseRadix; } radix[numR] = N; numR++; for (int i = 0; i < numR; i++) { int B = radix[i]; if (B <= 8) { R1[i] = B; R2[i] = 1; continue; } int r1 = 2; int r2 = B / r1; while (r2 > r1) { r1 *= 2; r2 = B / r1; } R1[i] = r1; R2[i] = r2; } return numR; } void createGlobalFFTKernelString(int n, int BS, CLFFTKernelDir dir, int vertBS) { int i, j, k, t; int[] radixArr = new int[10]; int[] R1Arr = new int[10]; int[] R2Arr = new int[10]; int radix, R1, R2; int numRadices; int maxThreadsPerBlock = this.max_work_item_per_workgroup; int maxArrayLen = this.max_radix; int batchSize = this.min_mem_coalesce_width; CLFFTDataFormat dataFormat = this.format; boolean vertical = (dir == CLFFTKernelDir.X) ? false : true; numRadices = getGlobalRadixInfo(n, radixArr, R1Arr, R2Arr); int numPasses = numRadices; StringBuilder localString = new StringBuilder(); String kernelName; StringBuilder kernelString = this.kernel_string; int kCount = kernel_list.size(); //cl_fft_kernel_info **kInfo = &this.kernel_list; //int kCount = 0; //while(*kInfo) //{ // kInfo = &kInfo.next; // kCount++; //} int N = n; int m = log2(n); int Rinit = vertical ? BS : 1; batchSize = vertical ? Math.min(BS, batchSize) : batchSize; int passNum; for (passNum = 0; passNum < numPasses; passNum++) { localString.setLength(0); //kernelName.clear(); radix = radixArr[passNum]; R1 = R1Arr[passNum]; R2 = R2Arr[passNum]; int strideI = Rinit; for (i = 0; i < numPasses; i++) { if (i != passNum) { strideI *= radixArr[i]; } } int strideO = Rinit; for (i = 0; i < passNum; i++) { strideO *= radixArr[i]; } int threadsPerXForm = R2; batchSize = R2 == 1 ? this.max_work_item_per_workgroup : batchSize; batchSize = Math.min(batchSize, strideI); int threadsPerBlock = batchSize * threadsPerXForm; threadsPerBlock = Math.min(threadsPerBlock, maxThreadsPerBlock); batchSize = threadsPerBlock / threadsPerXForm; assert (R2 <= R1); assert (R1 * R2 == radix); assert (R1 <= maxArrayLen); assert (threadsPerBlock <= maxThreadsPerBlock); int numIter = R1 / R2; int gInInc = threadsPerBlock / batchSize; int lgStrideO = log2(strideO); int numBlocksPerXForm = strideI / batchSize; int numBlocks = numBlocksPerXForm; if (!vertical) { numBlocks *= BS; } else { numBlocks *= vertBS; } kernelName = "fft" + (kCount); CLFFTKernelInfo kInfo = new CLFFTKernelInfo(); if (R2 == 1) { kInfo.lmem_size = 0; } else { if (strideO == 1) { kInfo.lmem_size = (radix + 1) * batchSize; } else { kInfo.lmem_size = threadsPerBlock * R1; } } kInfo.num_workgroups = numBlocks; kInfo.num_xforms_per_workgroup = 1; kInfo.num_workitems_per_workgroup = threadsPerBlock; kInfo.dir = dir; kInfo.in_place_possible = ((passNum == (numPasses - 1)) && ((numPasses & 1) != 0)); //kInfo.next = NULL; kInfo.kernel_name = kernelName; insertVariables(localString, R1); if (vertical) { localString.append("xNum = groupId >> ").append(log2(numBlocksPerXForm)).append(";\n"); localString.append("groupId = groupId & ").append(numBlocksPerXForm - 1).append(";\n"); localString.append("indexIn = mad24(groupId, ").append(batchSize).append(", xNum << ").append(log2(n * BS)).append(");\n"); localString.append("tid = mul24(groupId, ").append(batchSize).append(");\n"); localString.append("i = tid >> ").append(lgStrideO).append(";\n"); localString.append("j = tid & ").append(strideO - 1).append(";\n"); int stride = radix * Rinit; for (i = 0; i < passNum; i++) { stride *= radixArr[i]; } localString.append("indexOut = mad24(i, ").append(stride).append(", j + ").append("(xNum << ").append(log2(n * BS)).append("));\n"); localString.append("bNum = groupId;\n"); } else { int lgNumBlocksPerXForm = log2(numBlocksPerXForm); localString.append("bNum = groupId & ").append(numBlocksPerXForm - 1).append(";\n"); localString.append("xNum = groupId >> ").append(lgNumBlocksPerXForm).append(";\n"); localString.append("indexIn = mul24(bNum, ").append(batchSize).append(");\n"); localString.append("tid = indexIn;\n"); localString.append("i = tid >> ").append(lgStrideO).append(";\n"); localString.append("j = tid & ").append(strideO - 1).append(";\n"); int stride = radix * Rinit; for (i = 0; i < passNum; i++) { stride *= radixArr[i]; } localString.append("indexOut = mad24(i, ").append(stride).append(", j);\n"); localString.append("indexIn += (xNum << ").append(m).append(");\n"); localString.append("indexOut += (xNum << ").append(m).append(");\n"); } // Load Data int lgBatchSize = log2(batchSize); localString.append("tid = lId;\n"); localString.append("i = tid & ").append(batchSize - 1).append(";\n"); localString.append("j = tid >> ").append(lgBatchSize).append(";\n"); localString.append("indexIn += mad24(j, ").append(strideI).append(", i);\n"); if (dataFormat == CLFFTDataFormat.SplitComplexFormat) { localString.append("in_real += indexIn;\n"); localString.append("in_imag += indexIn;\n"); for (j = 0; j < R1; j++) { localString.append("a[").append(j).append("].x = in_real[").append(j * gInInc * strideI).append("];\n"); } for (j = 0; j < R1; j++) { localString.append("a[").append(j).append("].y = in_imag[").append(j * gInInc * strideI).append("];\n"); } } else { localString.append("in += indexIn;\n"); for (j = 0; j < R1; j++) { localString.append("a[").append(j).append("] = in[").append(j * gInInc * strideI).append("];\n"); } } localString.append("fftKernel").append(R1).append("(a, dir);\n"); if (R2 > 1) { // twiddle for (k = 1; k < R1; k++) { localString.append("ang = dir*(2.0f*M_PI*").append(k).append("/").append(radix).append(")*j;\n"); localString.append("w = (float2)(native_cos(ang), native_sin(ang));\n"); localString.append("a[").append(k).append("] = complexMul(a[").append(k).append("], w);\n"); } // shuffle numIter = R1 / R2; localString.append("indexIn = mad24(j, ").append(threadsPerBlock * numIter).append(", i);\n"); localString.append("lMemStore = sMem + tid;\n"); localString.append("lMemLoad = sMem + indexIn;\n"); for (k = 0; k < R1; k++) { localString.append("lMemStore[").append(k * threadsPerBlock).append("] = a[").append(k).append("].x;\n"); } localString.append("barrier(CLK_LOCAL_MEM_FENCE);\n"); for (k = 0; k < numIter; k++) { for (t = 0; t < R2; t++) { localString.append("a[").append(k * R2 + t).append("].x = lMemLoad[").append(t * batchSize + k * threadsPerBlock).append("];\n"); } } localString.append("barrier(CLK_LOCAL_MEM_FENCE);\n"); for (k = 0; k < R1; k++) { localString.append("lMemStore[").append(k * threadsPerBlock).append("] = a[").append(k).append("].y;\n"); } localString.append("barrier(CLK_LOCAL_MEM_FENCE);\n"); for (k = 0; k < numIter; k++) { for (t = 0; t < R2; t++) { localString.append("a[").append(k * R2 + t).append("].y = lMemLoad[").append(t * batchSize + k * threadsPerBlock).append("];\n"); } } localString.append("barrier(CLK_LOCAL_MEM_FENCE);\n"); for (j = 0; j < numIter; j++) { localString.append("fftKernel").append(R2).append("(a + ").append(j * R2).append(", dir);\n"); } } // twiddle if (passNum < (numPasses - 1)) { localString.append("l = ((bNum << ").append(lgBatchSize).append(") + i) >> ").append(lgStrideO).append(";\n"); localString.append("k = j << ").append(log2(R1 / R2)).append(";\n"); localString.append("ang1 = dir*(2.0f*M_PI/").append(N).append(")*l;\n"); for (t = 0; t < R1; t++) { localString.append("ang = ang1*(k + ").append((t % R2) * R1 + (t / R2)).append(");\n"); localString.append("w = (float2)(native_cos(ang), native_sin(ang));\n"); localString.append("a[").append(t).append("] = complexMul(a[").append(t).append("], w);\n"); } } // Store Data if (strideO == 1) { localString.append("lMemStore = sMem + mad24(i, ").append(radix + 1).append(", j << ").append(log2(R1 / R2)).append(");\n"); localString.append("lMemLoad = sMem + mad24(tid >> ").append(log2(radix)).append(", ").append(radix + 1).append(", tid & ").append(radix - 1).append(");\n"); for (i = 0; i < R1 / R2; i++) { for (j = 0; j < R2; j++) { localString.append("lMemStore[ ").append(i + j * R1).append("] = a[").append(i * R2 + j).append("].x;\n"); } } localString.append("barrier(CLK_LOCAL_MEM_FENCE);\n"); if (threadsPerBlock >= radix) { for (i = 0; i < R1; i++) { localString.append("a[").append(i).append("].x = lMemLoad[").append(i * (radix + 1) * (threadsPerBlock / radix)).append("];\n"); } } else { int innerIter = radix / threadsPerBlock; int outerIter = R1 / innerIter; for (i = 0; i < outerIter; i++) { for (j = 0; j < innerIter; j++) { localString.append("a[").append(i * innerIter + j).append("].x = lMemLoad[").append(j * threadsPerBlock + i * (radix + 1)).append("];\n"); } } } localString.append("barrier(CLK_LOCAL_MEM_FENCE);\n"); for (i = 0; i < R1 / R2; i++) { for (j = 0; j < R2; j++) { localString.append("lMemStore[ ").append(i + j * R1).append("] = a[").append(i * R2 + j).append("].y;\n"); } } localString.append("barrier(CLK_LOCAL_MEM_FENCE);\n"); if (threadsPerBlock >= radix) { for (i = 0; i < R1; i++) { localString.append("a[").append(i).append("].y = lMemLoad[").append(i * (radix + 1) * (threadsPerBlock / radix)).append("];\n"); } } else { int innerIter = radix / threadsPerBlock; int outerIter = R1 / innerIter; for (i = 0; i < outerIter; i++) { for (j = 0; j < innerIter; j++) { localString.append("a[").append(i * innerIter + j).append("].y = lMemLoad[").append(j * threadsPerBlock + i * (radix + 1)).append("];\n"); } } } localString.append("barrier(CLK_LOCAL_MEM_FENCE);\n"); localString.append("indexOut += tid;\n"); if (dataFormat == CLFFTDataFormat.SplitComplexFormat) { localString.append("out_real += indexOut;\n"); localString.append("out_imag += indexOut;\n"); for (k = 0; k < R1; k++) { localString.append("out_real[").append(k * threadsPerBlock).append("] = a[").append(k).append("].x;\n"); } for (k = 0; k < R1; k++) { localString.append("out_imag[").append(k * threadsPerBlock).append("] = a[").append(k).append("].y;\n"); } } else { localString.append("out += indexOut;\n"); for (k = 0; k < R1; k++) { localString.append("out[").append(k * threadsPerBlock).append("] = a[").append(k).append("];\n"); } } } else { localString.append("indexOut += mad24(j, ").append(numIter * strideO).append(", i);\n"); if (dataFormat == CLFFTDataFormat.SplitComplexFormat) { localString.append("out_real += indexOut;\n"); localString.append("out_imag += indexOut;\n"); for (k = 0; k < R1; k++) { localString.append("out_real[").append(((k % R2) * R1 + (k / R2)) * strideO).append("] = a[").append(k).append("].x;\n"); } for (k = 0; k < R1; k++) { localString.append("out_imag[").append(((k % R2) * R1 + (k / R2)) * strideO).append("] = a[").append(k).append("].y;\n"); } } else { localString.append("out += indexOut;\n"); for (k = 0; k < R1; k++) { localString.append("out[").append(((k % R2) * R1 + (k / R2)) * strideO).append("] = a[").append(k).append("];\n"); } } } insertHeader(kernelString, kernelName, dataFormat); kernelString.append("{\n"); if (kInfo.lmem_size > 0) { kernelString.append(" __local float sMem[").append(kInfo.lmem_size).append("];\n"); } kernelString.append(localString); kernelString.append("}\n"); N /= radix; kernel_list.add(kInfo); kCount++; } } void FFT1D(CLFFTKernelDir dir) { int[] radixArray = new int[10]; switch (dir) { case X: if (this.size.x > this.max_localmem_fft_size) { createGlobalFFTKernelString(this.size.x, 1, dir, 1); } else if (this.size.x > 1) { getRadixArray(this.size.x, radixArray, 0); if (this.size.x / radixArray[0] <= this.max_work_item_per_workgroup) { createLocalMemfftKernelString(); } else { getRadixArray(this.size.x, radixArray, this.max_radix); if (this.size.x / radixArray[0] <= this.max_work_item_per_workgroup) { createLocalMemfftKernelString(); } else { createGlobalFFTKernelString(this.size.x, 1, dir, 1); } } } break; case Y: if (this.size.y > 1) { createGlobalFFTKernelString(this.size.y, this.size.x, dir, 1); } break; case Z: if (this.size.z > 1) { createGlobalFFTKernelString(this.size.z, this.size.x * this.size.y, dir, 1); } break; default: return; } } /* * * Pre-defined kernel parts * */ static String baseKernels = "#ifndef M_PI\n" + "#define M_PI 0x1.921fb54442d18p+1\n" + "#endif\n" + "#define complexMul(a,b) ((float2)(mad(-(a).y, (b).y, (a).x * (b).x), mad((a).y, (b).x, (a).x * (b).y)))\n" + "#define conj(a) ((float2)((a).x, -(a).y))\n" + "#define conjTransp(a) ((float2)(-(a).y, (a).x))\n" + "\n" + "#define fftKernel2(a,dir) \\\n" + "{ \\\n" + " float2 c = (a)[0]; \\\n" + " (a)[0] = c + (a)[1]; \\\n" + " (a)[1] = c - (a)[1]; \\\n" + "}\n" + "\n" + "#define fftKernel2S(d1,d2,dir) \\\n" + "{ \\\n" + " float2 c = (d1); \\\n" + " (d1) = c + (d2); \\\n" + " (d2) = c - (d2); \\\n" + "}\n" + "\n" + "#define fftKernel4(a,dir) \\\n" + "{ \\\n" + " fftKernel2S((a)[0], (a)[2], dir); \\\n" + " fftKernel2S((a)[1], (a)[3], dir); \\\n" + " fftKernel2S((a)[0], (a)[1], dir); \\\n" + " (a)[3] = (float2)(dir)*(conjTransp((a)[3])); \\\n" + " fftKernel2S((a)[2], (a)[3], dir); \\\n" + " float2 c = (a)[1]; \\\n" + " (a)[1] = (a)[2]; \\\n" + " (a)[2] = c; \\\n" + "}\n" + "\n" + "#define fftKernel4s(a0,a1,a2,a3,dir) \\\n" + "{ \\\n" + " fftKernel2S((a0), (a2), dir); \\\n" + " fftKernel2S((a1), (a3), dir); \\\n" + " fftKernel2S((a0), (a1), dir); \\\n" + " (a3) = (float2)(dir)*(conjTransp((a3))); \\\n" + " fftKernel2S((a2), (a3), dir); \\\n" + " float2 c = (a1); \\\n" + " (a1) = (a2); \\\n" + " (a2) = c; \\\n" + "}\n" + "\n" + "#define bitreverse8(a) \\\n" + "{ \\\n" + " float2 c; \\\n" + " c = (a)[1]; \\\n" + " (a)[1] = (a)[4]; \\\n" + " (a)[4] = c; \\\n" + " c = (a)[3]; \\\n" + " (a)[3] = (a)[6]; \\\n" + " (a)[6] = c; \\\n" + "}\n" + "\n" + "#define fftKernel8(a,dir) \\\n" + "{ \\\n" + " const float2 w1 = (float2)(0x1.6a09e6p-1f, dir*0x1.6a09e6p-1f); \\\n" + " const float2 w3 = (float2)(-0x1.6a09e6p-1f, dir*0x1.6a09e6p-1f); \\\n" + " float2 c; \\\n" + " fftKernel2S((a)[0], (a)[4], dir); \\\n" + " fftKernel2S((a)[1], (a)[5], dir); \\\n" + " fftKernel2S((a)[2], (a)[6], dir); \\\n" + " fftKernel2S((a)[3], (a)[7], dir); \\\n" + " (a)[5] = complexMul(w1, (a)[5]); \\\n" + " (a)[6] = (float2)(dir)*(conjTransp((a)[6])); \\\n" + " (a)[7] = complexMul(w3, (a)[7]); \\\n" + " fftKernel2S((a)[0], (a)[2], dir); \\\n" + " fftKernel2S((a)[1], (a)[3], dir); \\\n" + " fftKernel2S((a)[4], (a)[6], dir); \\\n" + " fftKernel2S((a)[5], (a)[7], dir); \\\n" + " (a)[3] = (float2)(dir)*(conjTransp((a)[3])); \\\n" + " (a)[7] = (float2)(dir)*(conjTransp((a)[7])); \\\n" + " fftKernel2S((a)[0], (a)[1], dir); \\\n" + " fftKernel2S((a)[2], (a)[3], dir); \\\n" + " fftKernel2S((a)[4], (a)[5], dir); \\\n" + " fftKernel2S((a)[6], (a)[7], dir); \\\n" + " bitreverse8((a)); \\\n" + "}\n" + "\n" + "#define bitreverse4x4(a) \\\n" + "{ \\\n" + " float2 c; \\\n" + " c = (a)[1]; (a)[1] = (a)[4]; (a)[4] = c; \\\n" + " c = (a)[2]; (a)[2] = (a)[8]; (a)[8] = c; \\\n" + " c = (a)[3]; (a)[3] = (a)[12]; (a)[12] = c; \\\n" + " c = (a)[6]; (a)[6] = (a)[9]; (a)[9] = c; \\\n" + " c = (a)[7]; (a)[7] = (a)[13]; (a)[13] = c; \\\n" + " c = (a)[11]; (a)[11] = (a)[14]; (a)[14] = c; \\\n" + "}\n" + "\n" + "#define fftKernel16(a,dir) \\\n" + "{ \\\n" + " const float w0 = 0x1.d906bcp-1f; \\\n" + " const float w1 = 0x1.87de2ap-2f; \\\n" + " const float w2 = 0x1.6a09e6p-1f; \\\n" + " fftKernel4s((a)[0], (a)[4], (a)[8], (a)[12], dir); \\\n" + " fftKernel4s((a)[1], (a)[5], (a)[9], (a)[13], dir); \\\n" + " fftKernel4s((a)[2], (a)[6], (a)[10], (a)[14], dir); \\\n" + " fftKernel4s((a)[3], (a)[7], (a)[11], (a)[15], dir); \\\n" + " (a)[5] = complexMul((a)[5], (float2)(w0, dir*w1)); \\\n" + " (a)[6] = complexMul((a)[6], (float2)(w2, dir*w2)); \\\n" + " (a)[7] = complexMul((a)[7], (float2)(w1, dir*w0)); \\\n" + " (a)[9] = complexMul((a)[9], (float2)(w2, dir*w2)); \\\n" + " (a)[10] = (float2)(dir)*(conjTransp((a)[10])); \\\n" + " (a)[11] = complexMul((a)[11], (float2)(-w2, dir*w2)); \\\n" + " (a)[13] = complexMul((a)[13], (float2)(w1, dir*w0)); \\\n" + " (a)[14] = complexMul((a)[14], (float2)(-w2, dir*w2)); \\\n" + " (a)[15] = complexMul((a)[15], (float2)(-w0, dir*-w1)); \\\n" + " fftKernel4((a), dir); \\\n" + " fftKernel4((a) + 4, dir); \\\n" + " fftKernel4((a) + 8, dir); \\\n" + " fftKernel4((a) + 12, dir); \\\n" + " bitreverse4x4((a)); \\\n" + "}\n" + "\n" + "#define bitreverse32(a) \\\n" + "{ \\\n" + " float2 c1, c2; \\\n" + " c1 = (a)[2]; (a)[2] = (a)[1]; c2 = (a)[4]; (a)[4] = c1; c1 = (a)[8]; (a)[8] = c2; c2 = (a)[16]; (a)[16] = c1; (a)[1] = c2; \\\n" + " c1 = (a)[6]; (a)[6] = (a)[3]; c2 = (a)[12]; (a)[12] = c1; c1 = (a)[24]; (a)[24] = c2; c2 = (a)[17]; (a)[17] = c1; (a)[3] = c2; \\\n" + " c1 = (a)[10]; (a)[10] = (a)[5]; c2 = (a)[20]; (a)[20] = c1; c1 = (a)[9]; (a)[9] = c2; c2 = (a)[18]; (a)[18] = c1; (a)[5] = c2; \\\n" + " c1 = (a)[14]; (a)[14] = (a)[7]; c2 = (a)[28]; (a)[28] = c1; c1 = (a)[25]; (a)[25] = c2; c2 = (a)[19]; (a)[19] = c1; (a)[7] = c2; \\\n" + " c1 = (a)[22]; (a)[22] = (a)[11]; c2 = (a)[13]; (a)[13] = c1; c1 = (a)[26]; (a)[26] = c2; c2 = (a)[21]; (a)[21] = c1; (a)[11] = c2; \\\n" + " c1 = (a)[30]; (a)[30] = (a)[15]; c2 = (a)[29]; (a)[29] = c1; c1 = (a)[27]; (a)[27] = c2; c2 = (a)[23]; (a)[23] = c1; (a)[15] = c2; \\\n" + "}\n" + "\n" + "#define fftKernel32(a,dir) \\\n" + "{ \\\n" + " fftKernel2S((a)[0], (a)[16], dir); \\\n" + " fftKernel2S((a)[1], (a)[17], dir); \\\n" + " fftKernel2S((a)[2], (a)[18], dir); \\\n" + " fftKernel2S((a)[3], (a)[19], dir); \\\n" + " fftKernel2S((a)[4], (a)[20], dir); \\\n" + " fftKernel2S((a)[5], (a)[21], dir); \\\n" + " fftKernel2S((a)[6], (a)[22], dir); \\\n" + " fftKernel2S((a)[7], (a)[23], dir); \\\n" + " fftKernel2S((a)[8], (a)[24], dir); \\\n" + " fftKernel2S((a)[9], (a)[25], dir); \\\n" + " fftKernel2S((a)[10], (a)[26], dir); \\\n" + " fftKernel2S((a)[11], (a)[27], dir); \\\n" + " fftKernel2S((a)[12], (a)[28], dir); \\\n" + " fftKernel2S((a)[13], (a)[29], dir); \\\n" + " fftKernel2S((a)[14], (a)[30], dir); \\\n" + " fftKernel2S((a)[15], (a)[31], dir); \\\n" + " (a)[17] = complexMul((a)[17], (float2)(0x1.f6297cp-1f, dir*0x1.8f8b84p-3f)); \\\n" + " (a)[18] = complexMul((a)[18], (float2)(0x1.d906bcp-1f, dir*0x1.87de2ap-2f)); \\\n" + " (a)[19] = complexMul((a)[19], (float2)(0x1.a9b662p-1f, dir*0x1.1c73b4p-1f)); \\\n" + " (a)[20] = complexMul((a)[20], (float2)(0x1.6a09e6p-1f, dir*0x1.6a09e6p-1f)); \\\n" + " (a)[21] = complexMul((a)[21], (float2)(0x1.1c73b4p-1f, dir*0x1.a9b662p-1f)); \\\n" + " (a)[22] = complexMul((a)[22], (float2)(0x1.87de2ap-2f, dir*0x1.d906bcp-1f)); \\\n" + " (a)[23] = complexMul((a)[23], (float2)(0x1.8f8b84p-3f, dir*0x1.f6297cp-1f)); \\\n" + " (a)[24] = complexMul((a)[24], (float2)(0x0p+0f, dir*0x1p+0f)); \\\n" + " (a)[25] = complexMul((a)[25], (float2)(-0x1.8f8b84p-3f, dir*0x1.f6297cp-1f)); \\\n" + " (a)[26] = complexMul((a)[26], (float2)(-0x1.87de2ap-2f, dir*0x1.d906bcp-1f)); \\\n" + " (a)[27] = complexMul((a)[27], (float2)(-0x1.1c73b4p-1f, dir*0x1.a9b662p-1f)); \\\n" + " (a)[28] = complexMul((a)[28], (float2)(-0x1.6a09e6p-1f, dir*0x1.6a09e6p-1f)); \\\n" + " (a)[29] = complexMul((a)[29], (float2)(-0x1.a9b662p-1f, dir*0x1.1c73b4p-1f)); \\\n" + " (a)[30] = complexMul((a)[30], (float2)(-0x1.d906bcp-1f, dir*0x1.87de2ap-2f)); \\\n" + " (a)[31] = complexMul((a)[31], (float2)(-0x1.f6297cp-1f, dir*0x1.8f8b84p-3f)); \\\n" + " fftKernel16((a), dir); \\\n" + " fftKernel16((a) + 16, dir); \\\n" + " bitreverse32((a)); \\\n" + "}\n\n"; static String twistKernelInterleaved = "__kernel void \\\n" + "clFFT_1DTwistInterleaved(__global float2 *in, unsigned int startRow, unsigned int numCols, unsigned int N, unsigned int numRowsToProcess, int dir) \\\n" + "{ \\\n" + " float2 a, w; \\\n" + " float ang; \\\n" + " unsigned int j; \\\n" + " unsigned int i = get_global_id(0); \\\n" + " unsigned int startIndex = i; \\\n" + " \\\n" + " if(i < numCols) \\\n" + " { \\\n" + " for(j = 0; j < numRowsToProcess; j++) \\\n" + " { \\\n" + " a = in[startIndex]; \\\n" + " ang = 2.0f * M_PI * dir * i * (startRow + j) / N; \\\n" + " w = (float2)(native_cos(ang), native_sin(ang)); \\\n" + " a = complexMul(a, w); \\\n" + " in[startIndex] = a; \\\n" + " startIndex += numCols; \\\n" + " } \\\n" + " } \\\n" + "} \\\n"; static String twistKernelPlannar = "__kernel void \\\n" + "clFFT_1DTwistSplit(__global float *in_real, __global float *in_imag , unsigned int startRow, unsigned int numCols, unsigned int N, unsigned int numRowsToProcess, int dir) \\\n" + "{ \\\n" + " float2 a, w; \\\n" + " float ang; \\\n" + " unsigned int j; \\\n" + " unsigned int i = get_global_id(0); \\\n" + " unsigned int startIndex = i; \\\n" + " \\\n" + " if(i < numCols) \\\n" + " { \\\n" + " for(j = 0; j < numRowsToProcess; j++) \\\n" + " { \\\n" + " a = (float2)(in_real[startIndex], in_imag[startIndex]); \\\n" + " ang = 2.0f * M_PI * dir * i * (startRow + j) / N; \\\n" + " w = (float2)(native_cos(ang), native_sin(ang)); \\\n" + " a = complexMul(a, w); \\\n" + " in_real[startIndex] = a.x; \\\n" + " in_imag[startIndex] = a.y; \\\n" + " startIndex += numCols; \\\n" + " } \\\n" + " } \\\n" + "} \\\n"; }