package com.mbien.opencl.demos.hellojocl; import com.mbien.opencl.CLBuffer; import com.mbien.opencl.CLCommandQueue; import com.mbien.opencl.CLContext; import com.mbien.opencl.CLKernel; import com.mbien.opencl.CLProgram; import java.io.IOException; import java.nio.ByteBuffer; import java.util.Random; import static java.lang.System.*; import static com.sun.gluegen.runtime.BufferFactory.*; import static com.mbien.opencl.CLBuffer.Mem.*; /** * Hello Java OpenCL example. Adds all elements of buffer A to buffer B * and stores the result in buffer C.
* Sample was inspired by the Nvidia VectorAdd example written in C/C++ * which is bundled in the Nvidia OpenCL SDK. * @author Michael Bien */ public class HelloJOCL { public static void main(String[] args) throws IOException { int elementCount = 11444777; // Length of arrays to process int localWorkSize = 256; // Local work size dimensions int globalWorkSize = roundUp(localWorkSize, elementCount); // rounded up to the nearest multiple of the localWorkSize // set up CLContext context = CLContext.create(); CLProgram program = context.createProgram(HelloJOCL.class.getResourceAsStream("VectorAdd.cl")).build(); CLBuffer clBufferA = context.createBuffer(globalWorkSize*SIZEOF_FLOAT, READ_ONLY); CLBuffer clBufferB = context.createBuffer(globalWorkSize*SIZEOF_FLOAT, READ_ONLY); CLBuffer clBufferC = context.createBuffer(globalWorkSize*SIZEOF_FLOAT, WRITE_ONLY); out.println("used device memory: " + (clBufferA.buffer.capacity()+clBufferB.buffer.capacity()+clBufferC.buffer.capacity())/1000000 +"MB"); // fill read buffers with random numbers (just to have test data; seed is fixed -> results will not change between runs). fillBuffer(clBufferA.buffer, 12345); fillBuffer(clBufferB.buffer, 67890); // get a reference to the kernel functon with the name 'VectorAdd' and map the buffers to its input parameters. CLKernel kernel = program.getCLKernels().get("VectorAdd"); kernel.setArg(0, clBufferA) .setArg(1, clBufferB) .setArg(2, clBufferC) .setArg(3, elementCount); // create command queue on first device. CLCommandQueue queue = context.getCLDevices()[0].createCommandQueue(); // asynchronous write of data to GPU device, blocking read later to get the computed results back. long time = nanoTime(); queue.putWriteBuffer(clBufferA, false) .putWriteBuffer(clBufferB, false) .putNDRangeKernel(kernel, 1, 0, globalWorkSize, localWorkSize) .putReadBuffer(clBufferC, true) .finish(); time = nanoTime() - time; // cleanup all resources associated with this context. context.release(); // print first few elements of the resulting buffer to the console. out.println("a+b=c results snapshot: "); for(int i = 0; i < 10; i++) out.print(clBufferC.buffer.getFloat() + ", "); out.println("...; " + clBufferC.buffer.remaining()/SIZEOF_FLOAT + " more"); out.println("computation took: "+(time/1000000)+"ms"); } private static final void fillBuffer(ByteBuffer buffer, int seed) { Random rnd = new Random(seed); while(buffer.remaining() != 0) buffer.putFloat(rnd.nextFloat()*100); buffer.rewind(); } private static final int roundUp(int groupSize, int globalSize) { int r = globalSize % groupSize; if (r == 0) { return globalSize; } else { return globalSize + groupSize - r; } } }