package com.mbien.opencl;
import com.mbien.opencl.util.CLUtil;
import com.sun.gluegen.runtime.BufferFactory;
import com.sun.gluegen.runtime.CPU;
import com.sun.gluegen.runtime.PointerBuffer;
import java.nio.Buffer;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import static com.mbien.opencl.CLException.*;
import static com.mbien.opencl.CL.*;
/**
* High level abstraction for an OpenCL Kernel.
* A kernel is a function declared in a program. A kernel is identified by the kernel
qualifier
* applied to any function in a program. A kernel object encapsulates the specific kernel
* function declared in a program and the argument values to be used when executing this
* kernel
function.
* CLKernel is not threadsafe.
* @see CLProgram#createCLKernel(java.lang.String)
* @see CLProgram#createCLKernels()
* @author Michael Bien
*/
public class CLKernel extends CLObject implements CLResource, Cloneable {
public final String name;
public final int numArgs;
private final CLProgram program;
private final ByteBuffer buffer;
private int argIndex;
private boolean force32BitArgs;
CLKernel(CLProgram program, long id) {
super(program.getContext(), id);
this.program = program;
this.buffer = BufferFactory.newDirectByteBuffer(8);
PointerBuffer pb = PointerBuffer.allocateDirect(1);
// get function name
int ret = cl.clGetKernelInfo(ID, CL_KERNEL_FUNCTION_NAME, 0, null, pb);
checkForError(ret, "error while asking for kernel function name");
ByteBuffer bb = ByteBuffer.allocateDirect((int)pb.get(0)).order(ByteOrder.nativeOrder());
ret = cl.clGetKernelInfo(ID, CL_KERNEL_FUNCTION_NAME, bb.capacity(), bb, null);
checkForError(ret, "error while asking for kernel function name");
this.name = CLUtil.clString2JavaString(bb, bb.capacity());
// get number of arguments
ret = cl.clGetKernelInfo(ID, CL_KERNEL_NUM_ARGS, bb.capacity(), bb, null);
checkForError(ret, "error while asking for number of function arguments.");
numArgs = bb.getInt(0);
}
// public CLKernel putArg(Buffer value) {
// setArg(argIndex++, value);
// return this;
// }
public CLKernel putArg(CLMemory> value) {
setArg(argIndex++, value);
return this;
}
public CLKernel putArg(int value) {
setArg(argIndex++, value);
return this;
}
public CLKernel putArg(long value) {
setArg(argIndex++, value);
return this;
}
public CLKernel putArg(float value) {
setArg(argIndex++, value);
return this;
}
public CLKernel putArg(double value) {
setArg(argIndex++, value);
return this;
}
public CLKernel putNullArg(int size) {
setNullArg(argIndex++, size);
return this;
}
public CLKernel putArgs(CLMemory>... values) {
setArgs(argIndex, values);
argIndex += values.length;
return this;
}
public CLKernel rewind() {
argIndex = 0;
return this;
}
// public CLKernel setArg(int argumentIndex, Buffer value) {
// setArgument(argumentIndex, CLMemory.sizeOfBufferElem(value)*value.capacity(), value);
// return this;
// }
public CLKernel setArg(int argumentIndex, CLMemory> value) {
setArgument(argumentIndex, CPU.is32Bit()?4:8, wrap(value.ID));
return this;
}
public CLKernel setArg(int argumentIndex, int value) {
setArgument(argumentIndex, 4, wrap(value));
return this;
}
public CLKernel setArg(int argumentIndex, long value) {
if(force32BitArgs) {
setArgument(argumentIndex, 4, wrap((int)value));
}else{
setArgument(argumentIndex, 8, wrap(value));
}
return this;
}
public CLKernel setArg(int argumentIndex, float value) {
setArgument(argumentIndex, 4, wrap(value));
return this;
}
public CLKernel setArg(int argumentIndex, double value) {
if(force32BitArgs) {
setArgument(argumentIndex, 4, wrap((float)value));
}else{
setArgument(argumentIndex, 8, wrap(value));
}
return this;
}
public CLKernel setNullArg(int argumentIndex, int size) {
setArgument(argumentIndex, size, null);
return this;
}
public CLKernel setArgs(CLMemory>... values) {
setArgs(0, values);
return this;
}
private void setArgs(int startIndex, CLMemory>... values) {
for (int i = 0; i < values.length; i++) {
setArg(i+startIndex, values[i]);
}
}
private void setArgument(int argumentIndex, int size, Buffer value) {
if(argumentIndex >= numArgs || argumentIndex < 0) {
throw new IndexOutOfBoundsException("kernel "+ toString() +" has "+numArgs+
" arguments, can not set argument with index "+argumentIndex);
}
if(!program.isExecutable()) {
throw new IllegalStateException("can not set program" +
" arguments for a not executable program. "+program);
}
int ret = cl.clSetKernelArg(ID, argumentIndex, size, value);
checkForError(ret, "error on clSetKernelArg");
}
/**
* Forces double and long arguments to be passed as float and int to the OpenCL kernel.
* This can be used in applications which want to mix kernels with different floating point precision.
*/
public CLKernel setForce32BitArgs(boolean force) {
this.force32BitArgs = force;
return this;
}
public CLProgram getProgram() {
return program;
}
/**
* @see #setForce32BitArgs(boolean)
*/
public boolean isForce32BitArgsEnabled() {
return force32BitArgs;
}
private Buffer wrap(float value) {
return buffer.putFloat(value).rewind();
}
private Buffer wrap(double value) {
return buffer.putDouble(value).rewind();
}
private Buffer wrap(int value) {
return buffer.putInt(value).rewind();
}
private Buffer wrap(long value) {
return buffer.putLong(value).rewind();
}
/**
* Returns the amount of local memory in bytes being used by a kernel.
* This includes local memory that may be needed by an implementation to execute the kernel,
* variables declared inside the kernel with the __local
address qualifier and local memory
* to be allocated for arguments to the kernel declared as pointers with the __local
address
* qualifier and whose size is specified with clSetKernelArg.
* If the local memory size, for any pointer argument to the kernel declared with
* the __local
address qualifier, is not specified, its size is assumed to be 0.
*/
public long getLocalMemorySize(CLDevice device) {
return getWorkGroupInfo(device, CL_KERNEL_LOCAL_MEM_SIZE);
}
/**
* Returns the work group size for this kernel on the given device.
* This provides a mechanism for the application to query the work-group size
* that can be used to execute a kernel on a specific device given by device.
* The OpenCL implementation uses the resource requirements of the kernel
* (register usage etc.) to determine what this work-group size should be.
*/
public long getWorkGroupSize(CLDevice device) {
return getWorkGroupInfo(device, CL_KERNEL_WORK_GROUP_SIZE);
}
/**
* Returns the work-group size specified by the __attribute__((reqd_work_gr oup_size(X, Y, Z)))
qualifier in kernel sources.
* If the work-group size is not specified using the above attribute qualifier new long[]{(0, 0, 0)}
is returned.
*/
public long[] getCompileWorkGroupSize(CLDevice device) {
int ret = cl.clGetKernelWorkGroupInfo(ID, device.ID, CL_KERNEL_COMPILE_WORK_GROUP_SIZE, 8*3, buffer, null);
checkForError(ret, "error while asking for clGetKernelWorkGroupInfo");
return new long[] { buffer.getLong(0), buffer.getLong(1), buffer.getLong(2) };
}
private long getWorkGroupInfo(CLDevice device, int flag) {
int ret = cl.clGetKernelWorkGroupInfo(ID, device.ID, flag, 8, buffer, null);
checkForError(ret, "error while asking for clGetKernelWorkGroupInfo");
return buffer.getLong(0);
}
/**
* Releases all resources of this kernel from its context.
*/
public void release() {
int ret = cl.clReleaseKernel(ID);
program.onKernelReleased(this);
checkForError(ret, "can not release kernel");
}
public void close() {
release();
}
@Override
public String toString() {
return "CLKernel [id: " + ID
+ " name: " + name+"]";
}
@Override
public boolean equals(Object obj) {
if (obj == null) {
return false;
}
if (getClass() != obj.getClass()) {
return false;
}
final CLKernel other = (CLKernel) obj;
if (this.ID != other.ID) {
return false;
}
if (!this.program.equals(other.program)) {
return false;
}
return true;
}
@Override
public int hashCode() {
int hash = 7;
hash = 43 * hash + (int) (this.ID ^ (this.ID >>> 32));
hash = 43 * hash + (this.program != null ? this.program.hashCode() : 0);
return hash;
}
/**
* Returns a new instance of this kernel with uninitialized arguments.
*/
@Override
public CLKernel clone() {
return program.createCLKernel(name).setForce32BitArgs(force32BitArgs);
}
}