1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
|
package com.mbien.opencl;
import com.sun.gluegen.runtime.CPU;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import static com.mbien.opencl.CLException.*;
import static com.mbien.opencl.CL.*;
/**
*
* @author Michael Bien
*/
public class CLProgram implements CLResource {
public final CLContext context;
public final long ID;
private final CL cl;
private Map<String, CLKernel> kernels;
private Map<CLDevice, Status> buildStatusMap;
private boolean executable;
CLProgram(CLContext context, String src) {
this.cl = context.cl;
this.context = context;
int[] intArray = new int[1];
// Create the program
ID = cl.clCreateProgramWithSource(context.ID, 1, new String[] {src}, new long[]{src.length()}, 0, intArray, 0);
checkForError(intArray[0], "can not create program with source");
}
private final void initKernels() {
if(kernels == null) {
int[] numKernels = new int[1];
int ret = cl.clCreateKernelsInProgram(ID, 0, null, 0, numKernels, 0);
checkForError(ret, "can not create kernels for program");
if(numKernels[0] > 0) {
HashMap<String, CLKernel> map = new HashMap<String, CLKernel>();
long[] kernelIDs = new long[numKernels[0]];
ret = cl.clCreateKernelsInProgram(ID, kernelIDs.length, kernelIDs, 0, null, 0);
checkForError(ret, "can not create kernels for program");
for (int i = 0; i < kernelIDs.length; i++) {
CLKernel kernel = new CLKernel(this, kernelIDs[i]);
map.put(kernel.name, kernel);
}
this.kernels = map;
}else{
initBuildStatus();
if(!isExecutable()) {
// It is illegal to create kernels from a not executable program.
// For consistency between AMD and NVIDIA drivers throw an exception at this point.
throw new CLException(CL_INVALID_PROGRAM_EXECUTABLE,
"can not initialize kernels, program is not executable. status: "+buildStatusMap);
}
}
}
}
private final void initBuildStatus() {
if(buildStatusMap == null) {
Map<CLDevice, Status> map = new HashMap<CLDevice, Status>();
CLDevice[] devices = getCLDevices();
for (CLDevice device : devices) {
Status status = getBuildStatus(device);
if(status == Status.BUILD_SUCCESS) {
executable = true;
}
map.put(device, status);
}
this.buildStatusMap = Collections.unmodifiableMap(map);
}
}
// TODO serialization, program build options
private final String getBuildInfoString(long device, int flag) {
long[] longArray = new long[1];
int ret = cl.clGetProgramBuildInfo(ID, device, flag, 0, null, longArray, 0);
checkForError(ret, "on clGetProgramBuildInfo");
ByteBuffer bb = ByteBuffer.allocate((int)longArray[0]).order(ByteOrder.nativeOrder());
ret = cl.clGetProgramBuildInfo(ID, device, flag, bb.capacity(), bb, null, 0);
checkForError(ret, "on clGetProgramBuildInfo");
return CLUtils.clString2JavaString(bb.array(), (int)longArray[0]);
}
private final String getProgramInfoString(int flag) {
long[] longArray = new long[1];
int ret = cl.clGetProgramInfo(ID, flag, 0, null, longArray, 0);
checkForError(ret, "on clGetProgramInfo");
ByteBuffer bb = ByteBuffer.allocate((int)longArray[0]).order(ByteOrder.nativeOrder());
ret = cl.clGetProgramInfo(ID, flag, bb.capacity(), bb, null, 0);
checkForError(ret, "on clGetProgramInfo");
return CLUtils.clString2JavaString(bb.array(), (int)longArray[0]);
}
// private int getProgramInfoInt(int flag) {
//
// ByteBuffer bb = ByteBuffer.allocate(4).order(ByteOrder.nativeOrder());
//
// int ret = cl.clGetProgramInfo(programID, flag, bb.capacity(), bb, null, 0);
// checkForError(ret, "");
//
// return bb.getInt();
// }
private int getBuildInfoInt(long device, int flag) {
ByteBuffer bb = ByteBuffer.allocate(4).order(ByteOrder.nativeOrder());
int ret = cl.clGetProgramBuildInfo(ID, device, flag, bb.capacity(), bb, null, 0);
checkForError(ret, "error on clGetProgramBuildInfo");
return bb.getInt();
}
/**
* Builds this program for all devices associated with the context and implementation specific build options.
* @return this
*/
public CLProgram build() {
build(null, (CLDevice[])null);
return this;
}
/**
* Builds this program for all devices associated with the context using the specified build options.
* @return this
*/
public CLProgram build(String options) {
build(options, (CLDevice[])null);
return this;
}
/**
* Builds this program for all devices associated with the context using the specified build options.
* @return this
*/
public CLProgram build(Option... options) {
build(Option.optionsOf(options), (CLDevice[])null);
return this;
}
/**
* Builds this program for the given devices and with the specified build options. In case this program was
* already built and there are kernels associated with this program they will be released first before rebuild.
* @return this
* @param devices A list of devices this program should be build on or null for all devices of its context.
*/
public CLProgram build(String options, CLDevice... devices) {
if(kernels != null) {
//No changes to the program executable are allowed while there are
//kernel objects associated with a program object.
releaseKernels();
}
long[] deviceIDs = null;
if(devices != null) {
deviceIDs = new long[devices.length];
for (int i = 0; i < deviceIDs.length; i++) {
deviceIDs[i] = devices[i].ID;
}
}
// invalidate build status
buildStatusMap = null;
executable = false;
// Build the program
int ret = cl.clBuildProgram(ID, deviceIDs, options, null, null);
if(ret != CL_SUCCESS) {
throw new CLException(ret, "\n"+getBuildLog());
}
return this;
}
void onKernelReleased(CLKernel kernel) {
this.kernels.remove(kernel.name);
}
/**
* Releases this program with its kernels.
*/
public void release() {
releaseKernels();
int ret = cl.clReleaseProgram(ID);
context.onProgramReleased(this);
checkForError(ret, "can not release program");
}
private void releaseKernels() {
if(kernels != null) {
String[] names = kernels.keySet().toArray(new String[kernels.size()]);
for (String name : names) {
kernels.get(name).release();
}
kernels = null;
}
}
/**
* Returns the kernel with the specified name.
* @throws IllegalArgumentException when no kernel with the specified name exists in this program.
*/
public CLKernel getCLKernel(String kernelName) {
initKernels();
final CLKernel kernel = kernels.get(kernelName);
if(kernel == null) {
throw new IllegalArgumentException(
this+" does not contain a kernel with the name '"+kernelName+"'");
}
return kernel;
}
/**
* Returns all kernels of this program in a unmodifiable view of a map
* with the kernel function names as keys.
*/
public Map<String, CLKernel> getCLKernels() {
initKernels();
return Collections.unmodifiableMap(kernels);
}
/**
* Returns all devices associated with this program.
*/
public CLDevice[] getCLDevices() {
long[] longArray = new long[1];
int ret = cl.clGetProgramInfo(ID, CL_PROGRAM_DEVICES, 0, null, longArray, 0);
checkForError(ret, "on clGetProgramInfo");
ByteBuffer bb = ByteBuffer.allocate((int) longArray[0]).order(ByteOrder.nativeOrder());
ret = cl.clGetProgramInfo(ID, CL_PROGRAM_DEVICES, bb.capacity(), bb, null, 0);
checkForError(ret, "on clGetProgramInfo");
int count = bb.capacity() / (CPU.is32Bit()?4:8);
CLDevice[] devices = new CLDevice[count];
for (int i = 0; i < count; i++) {
devices[i] = context.getCLDevice(CPU.is32Bit()?bb.getInt():bb.getLong());
}
return devices;
}
/**
* Returns the build log of this program on all devices. The contents of the log are
* implementation dependent.
*/
public String getBuildLog() {
StringBuilder sb = new StringBuilder();
CLDevice[] devices = getCLDevices();
for (int i = 0; i < devices.length; i++) {
CLDevice device = devices[i];
sb.append(device).append(" build log:\n");
String log = getBuildLog(device).trim();
sb.append(log.isEmpty()?" <empty>":log);
if(i != devices.length-1)
sb.append("\n");
}
return sb.toString();
}
/**
* Returns the build status enum of this program for each device as Map.
*/
public Map<CLDevice,Status> getBuildStatus() {
initBuildStatus();
return buildStatusMap;
}
/**
* Returns true if the build status 'BUILD_SUCCESS' for at least one device
* of this program exists.
*/
public boolean isExecutable() {
initBuildStatus();
return executable;
}
/**
* Returns the build log for this program on the specified device. The contents
* of the log are implementation dependent log can be an empty String.
*/
public String getBuildLog(CLDevice device) {
return getBuildInfoString(device.ID, CL_PROGRAM_BUILD_LOG);
}
/**
* Returns the build status enum for this program on the specified device.
*/
public Status getBuildStatus(CLDevice device) {
int clStatus = getBuildInfoInt(device.ID, CL_PROGRAM_BUILD_STATUS);
return Status.valueOf(clStatus);
}
/**
* Returns the source code of this program. Note: sources are not cached,
* each call of this method calls into Open
*/
public String getSource() {
return getProgramInfoString(CL_PROGRAM_SOURCE);
}
/**
* Returns the binaries for this program in a map containing the device as key
* and the byte array as value.
*/
public Map<CLDevice, byte[]> getBinaries() {
CLDevice[] devices = getCLDevices();
ByteBuffer sizes = ByteBuffer.allocate(8*devices.length).order(ByteOrder.nativeOrder());
int ret = cl.clGetProgramInfo(ID, CL_PROGRAM_BINARY_SIZES, sizes.capacity(), sizes, null, 0);
checkForError(ret, "on clGetProgramInfo");
int binarySize = 0;
while(sizes.remaining() != 0)
binarySize += (int)sizes.getLong();
ByteBuffer binaries = ByteBuffer.allocate(binarySize).order(ByteOrder.nativeOrder());
ret = cl.clGetProgramInfo(ID, CL_PROGRAM_BINARIES, binaries.capacity(), binaries, null, 0); // TODO crash, driver bug?
checkForError(ret, "on clGetProgramInfo");
Map<CLDevice, byte[]> map = new HashMap<CLDevice, byte[]>();
for (int i = 0; i < devices.length; i++) {
byte[] bytes = new byte[(int)sizes.getLong()];
binaries.get(bytes);
map.put(devices[i], bytes);
}
return map;
}
@Override
public String toString() {
return "CLProgram [id: " + ID
+ " status: "+getBuildStatus()+"]";
}
@Override
public boolean equals(Object obj) {
if (obj == null) {
return false;
}
if (getClass() != obj.getClass()) {
return false;
}
final CLProgram other = (CLProgram) obj;
if (this.ID != other.ID) {
return false;
}
if (!this.context.equals(other.context)) {
return false;
}
return true;
}
@Override
public int hashCode() {
int hash = 7;
hash = 37 * hash + (this.context != null ? this.context.hashCode() : 0);
hash = 37 * hash + (int) (this.ID ^ (this.ID >>> 32));
return hash;
}
public enum Status {
BUILD_SUCCESS(CL_BUILD_SUCCESS),
BUILD_NONE(CL_BUILD_NONE),
BUILD_IN_PROGRESS(CL_BUILD_IN_PROGRESS),
BUILD_ERROR(CL_BUILD_ERROR);
/**
* Value of wrapped OpenCL device type.
*/
public final int STATUS;
private Status(int status) {
this.STATUS = status;
}
public static Status valueOf(int clBuildStatus) {
switch(clBuildStatus) {
case(CL_BUILD_SUCCESS):
return BUILD_SUCCESS;
case(CL_BUILD_NONE):
return BUILD_NONE;
case(CL_BUILD_IN_PROGRESS):
return BUILD_IN_PROGRESS;
case(CL_BUILD_ERROR):
return BUILD_ERROR;
// is this a standard state?
// case (CL_BUILD_PROGRAM_FAILURE):
// return BUILD_PROGRAM_FAILURE;
}
return null;
}
}
/**
* Common compiler optons.
*/
public enum Option {
/**
* Treat double precision floating-point constant as single precision constant.
*/
SINGLE_PRECISION_CONSTANTS("-cl-single-precision-constant"),
/**
* This option controls how single precision and double precision denormalized numbers are handled.
* If specified as a build option, the single precision denormalized numbers may be flushed to zero
* and if the optional extension for double precision is supported, double precision denormalized numbers
* may also be flushed to zero. This is intended to be a performance hint and the OpenCL compiler can choose
* not to flush denorms to zero if the device supports single precision (or double precision) denormalized numbers.<br>
* This option is ignored for single precision numbers if the device does not support single precision denormalized
* numbers i.e. CL_FP_DENORM bit is not set in CL_DEVICE_SINGLE_FP_CONFIG<br>
* This option is ignored for double precision numbers if the device does not support double precision or if it does support
* double precison but CL_FP_DENORM bit is not set in CL_DEVICE_DOUBLE_FP_CONFIG.<br>
* This flag only applies for scalar and vector single precision floating-point variables and computations on
* these floating-point variables inside a program. It does not apply to reading from or writing to image objects.
*/
DENORMS_ARE_ZERO("-cl-denorms-are-zero"),
/**
* This option disables all optimizations. The default is optimizations are enabled.
*/
DISABLE_OPT("-cl-opt-disable"),
/**
* This option allows the compiler to assume the strictest aliasing rules.
*/
STRICT_ALIASING("-cl-strict-aliasing"),
/**
* Allow a * b + c to be replaced by a mad. The mad computes a * b + c with reduced accuracy.
* For example, some OpenCL devices implement mad as truncate the result of a * b before adding it to c.
*/
ENABLE_MAD("-cl-mad-enable"),
/**
* Allow optimizations for floating-point arithmetic that ignore the signedness of zero.
* IEEE 754 arithmetic specifies the behavior of distinct +0.0 and -0.0 values, which then prohibits
* simplification of expressions such as x+0.0 or 0.0*x (even with -cl-finite-math-only ({@link #FINITE_MATH_ONLY})).
* This option implies that the sign of a zero result isn't significant.
*/
NO_SIGNED_ZEROS("-cl-no-signed-zeros"),
/**
* Allow optimizations for floating-point arithmetic that<br>
* (a) assume that arguments and results are valid,<br>
* (b) may violate IEEE 754 standard and<br>
* (c) may violate the OpenCL numerical compliance requirements as defined in section
* 7.4 for single-precision floating-point, section 9.3.9 for double-precision floating-point,
* and edge case behavior in section 7.5.<br>
* This option includes the -cl-no-signed-zeros ({@link #NO_SIGNED_ZEROS})
* and -cl-mad-enable ({@link #ENABLE_MAD}) options.
*/
UNSAFE_MATH("-cl-unsafe-math-optimizations"),
/**
* Allow optimizations for floating-point arithmetic that assume that arguments and results are not NaNs or ±∞.
* This option may violate the OpenCL numerical compliance requirements defined in in section 7.4 for
* single-precision floating-point, section 9.3.9 for double-precision floating-point, and edge case behavior in section 7.5.
*/
FINITE_MATH_ONLY("-cl-finite-math-only"),
/**
* Sets the optimization options -cl-finite-math-only ({@link #FINITE_MATH_ONLY}) and -cl-unsafe-math-optimizations ({@link #UNSAFE_MATH}).
* This allows optimizations for floating-point arithmetic that may violate the IEEE 754
* standard and the OpenCL numerical compliance requirements defined in the specification
* in section 7.4 for single-precision floating-point, section 9.3.9 for double-precision
* floating-point, and edge case behavior in section 7.5. This option causes the preprocessor
* macro __FAST_RELAXED_MATH__ to be defined in the OpenCL program.
*/
FAST_RELAXED_MATH("-cl-fast-relaxed-math"),
/**
* Inhibit all warning messages.
*/
DISABLE_WARNINGS("-w"),
/**
* Make all warnings into errors.
*/
WARNINGS_ARE_ERRORS("-Werror");
private final String option;
private Option(String option) {
this.option = option;
}
public final static String optionsOf(Option... options) {
StringBuilder sb = new StringBuilder(options.length * 24);
for (int i = 0; i < options.length; i++) {
sb.append(options[i].option);
if(i!= options.length-1)
sb.append(" ");
}
return sb.toString();
}
}
}
|