aboutsummaryrefslogtreecommitdiffstats
path: root/demos/NVidia/VertexArrayRange.java
blob: 0da54bf77b7fbaaf5c2877419c9a7e837a33f67c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
import java.awt.*;
import java.awt.event.*;
import java.nio.*;
import java.util.*;
import gl4java.*;
import gl4java.awt.*;
import gl4java.drawable.*;

/** <P> A port of NVidia's [tm] Vertex Array Range demonstration to
    OpenGL[tm] for Java[tm] and the Java programming language. The
    current web site for the demo (which does not appear to contain
    the original C++ source code for this demo) is <a href =
    "http://developer.nvidia.com/view.asp?IO=Using_GL_NV_fence">here</a>. </P>

    <P> This demonstration requires the following:

    <ul>
    <li> A JDK 1.4 implementation (Beta 3 or later)
    <li> an NVidia GeForce-based card
    <li> a recent set of drivers
    </ul>

    </P>

    <P> This demonstration illustrates the effective use of the
    java.nio direct buffer classes in JDK 1.4 to access memory outside
    of the Java garbage-collected heap, in particular that returned
    from the NVidia-specific routine wglAllocateMemoryNV. This memory
    region is used in conjunction with glVertexArrayRangeNV. </P>

    <P> In contrast to the C++ version of this demo, the Java
    programming language version compares the following two
    configurations:

    <ul>
    <li> JDK 1.4 NIO buffers + VAR extension
    <li> pre-JDK 1.4-style OpenGL for Java glVertexPointer calls
    taking float[]
    </ul>

    The glVertexPointer calls contain a long-standing bug wherein if a
    garbage collection occurs at the wrong time, the arrays containing
    the data passed down to glVertexPointer may move, leading to
    either incorrect data being drawn or a program crash. This is
    obviously not suitable for production systems. The solution is to
    upgrade to JDK 1.4 and use java.nio direct buffers for the storage
    passed down to glVertexPointer and similar routines which take
    pointers to persistent regions of memory, regardless of whether an
    extension like NVidia's vertex array range is used. More
    information on this topic is available <a href =
    "http://java.sun.com/products/jfc/tsc/articles/jcanyon/">here</a>. </P>

    <P> On a 750 MHz PIII with an SDRAM memory bus and a GeForce 256
    running the Java HotSpot[tm] Client VM and OpenGL for Java 2.8,
    this demonstration attains 90% of the speed of the compiled C++
    code, with a frame rate of 27 FPS, compared to 30 FPS for the C++
    version. On higher-end hardware (a dual 667 MHz PIII with RDRAM
    and a GeForce 2) the demo currently attains between 65% and 75% of
    C++ speed with the HotSpot Client and Server compilers,
    respectively. </P> */

public class VertexArrayRange {
  private boolean[] b = new boolean[256];
  private GLFunc14 gl;
  private GLUFunc14 glu;
  private static final int SIZEOF_FLOAT = 4;
  private static final int STRIP_SIZE  = 48;
  private int tileSize   = 9 * STRIP_SIZE;
  private int numBuffers = 4;
  private int bufferLength = 1000000;
  private int bufferSize   = bufferLength * SIZEOF_FLOAT;
  private static final int SIN_ARRAY_SIZE = 1024;
  

  private FloatBuffer bigArrayVar;
  private int[][]    elements;
  private float[]    xyArray;

  // NOTE: we could as well use direct buffers for the "slow" vertices
  // and normals. However, we do not use FloatBuffers to wrap these
  // float[] arrays to prevent breaking the Class Hierarchy Analysis
  // which (currently) allows inlining of all accessors in the
  // innermost loop. Avoiding mixing direct and non-direct java.nio
  // buffers in the same application is currently recommended
  // practice.
  static class VarBuffer {
    public FloatBuffer fastVertices;
    public FloatBuffer fastNormals;
    public int        fence;
    public float[]    slowVertices;
    public float[]    slowNormals;
  }
  private VarBuffer[] buffers;
  
  private float[] sinArray;
  private float[] cosArray;

  // Primitive: GL_QUAD_STRIP, GL_LINE_STRIP, or GL_POINTS
  private int primitive = GLEnum.GL_QUAD_STRIP;

  // Animation parameters
  private float hicoef = .06f;
  private float locoef = .10f;
  private float hifreq = 6.1f;
  private float lofreq = 2.5f;
  private float phaseRate = .02f;
  private float phase2Rate = -0.12f;
  private float phase  = 0;
  private float phase2 = 0;

  // Temporaries for computation
  float[] ysinlo = new float[STRIP_SIZE];
  float[] ycoslo = new float[STRIP_SIZE];
  float[] ysinhi = new float[STRIP_SIZE];
  float[] ycoshi = new float[STRIP_SIZE];

  // For thread-safety when dealing with keypresses
  private volatile boolean mustChangeState = false;

  // Frames-per-second computation
  private boolean firstProfiledFrame;
  private int     profiledFrameCount;
  private int     numDrawElementsCalls;
  private long startTimeMillis;

  static class PeriodicIterator {
    public PeriodicIterator(int arraySize,
                            float period,
                            float initialOffset,
                            float delta) {
      float arrayDelta =  arraySize * (delta / period); // floating-point steps-per-increment
      increment = (int)(arrayDelta * (1<<16));          // fixed-point steps-per-increment

      float offset = arraySize * (initialOffset / period); // floating-point initial index
      initOffset = (int)(offset * (1<<16));                // fixed-point initial index
        
        arraySizeMask = 0;
        int i = 20; // array should be reasonably sized...
        while((arraySize & (1<<i)) == 0) {
          i--;
        }
        arraySizeMask = (1<<i)-1;        
        index = initOffset;
    }

    public PeriodicIterator(PeriodicIterator arg) {
      this.arraySizeMask = arg.arraySizeMask;
      this.increment = arg.increment;
      this.initOffset = arg.initOffset;
      this.index = arg.index;
    }

    public int getIndex() {
      return (index >> 16) & arraySizeMask;
    }

    public void incr() {
      index += increment;
    }

    public void decr() {
      index -= increment;
    }

    public void reset() {
      index = initOffset;
    }

    //----------------------------------------------------------------------
    // Internals only below this point
    //

    private int arraySizeMask;
    // fraction bits == 16
    private int increment;
    private int initOffset;
    private int index;
  }

  public static void usage(String className) {
    System.out.println("usage: java " + className + " [-slow]");
    System.out.println("-slow flag starts up using data in the Java heap");
    System.exit(0);
  }

  public static void main(String[] args) {
    new VertexArrayRange().run(args);
  }

  public void run(String[] args) {
    boolean startSlow = false;

    if (args.length > 1) {
      usage(getClass().getName());
    }

    if (args.length == 1) {
      if (args[0].equals("-slow")) {
        startSlow = true;
      } else {
        usage(getClass().getName());
      }
    }

    if (!startSlow) {
      setFlag('v', true);   // VAR on
    }
    setFlag(' ', true);   // animation on
    setFlag('i', true);   // infinite viewer and light

    // FIXME: add glGetString
    Frame frame = new Frame("Very Simple NV_vertex_array_range demo");
    frame.setLayout(new BorderLayout());
    GLCapabilities caps = new GLCapabilities(true, false, true, 0, 0, 0, 0, 0);

    GLAnimCanvas canvas = GLDrawableFactory.getFactory().createGLAnimCanvas(caps, 800, 800);
    VARListener listener = new VARListener();
    canvas.addGLEventListener(listener);
    canvas.setUseRepaint(false);
    canvas.setUseFpsSleep(false);
    canvas.setUseYield(false);
    frame.add(canvas, BorderLayout.CENTER);
    frame.pack();
    frame.show();

    canvas.requestFocus();
    canvas.start();
  }

  //----------------------------------------------------------------------
  // Internals only below this point
  //

  private void setFlag(char key, boolean val) {
    b[((int) key) & 0xFF] = val;
  }

  private boolean getFlag(char key) {
    return b[((int) key) & 0xFF];
  }
  
  private static boolean testPresent(String function) {
    return GLContext.gljTestGLProc(function, false);
  }

  private static void ensurePresent(String function) {
    if (!testPresent(function)) {
      throw new RuntimeException("OpenGL routine \"" + function + "\" not present");
    }
  }

  class VARListener implements GLEventListener, GLEnum {
    public void init(GLDrawable drawable) {
      gl = (GLFunc14) drawable.getGL();
      glu = (GLUFunc14) drawable.getGLU();

      gl.glEnable(GL_DEPTH_TEST);

      ensurePresent("glVertexArrayRangeNV");
      ensurePresent("glGenFencesNV");
      ensurePresent("glSetFenceNV");
      ensurePresent("glTestFenceNV");
      ensurePresent("glFinishFenceNV");
      ensurePresent("glAllocateMemoryNV");
      
      gl.glClearColor(0, 0, 0, 0);

      gl.glEnable(GL_LIGHT0);
      gl.glEnable(GL_LIGHTING);
      gl.glEnable(GL_NORMALIZE);
      gl.glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, new float[]  {.1f, .1f,    0, 1});
      gl.glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, new float[]  {.6f, .6f,  .1f, 1});
      gl.glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, new float[] { 1,    1, .75f, 1});
      gl.glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 128.f);

      gl.glLightfv(GL_LIGHT0, GL_POSITION, new float[] { .5f, 0, .5f, 0});
      gl.glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 0);

      // NOTE: it looks like GLUT (or something else) sets up the
      // projection matrix in the C version of this demo.
      gl.glMatrixMode(GL_PROJECTION);
      gl.glLoadIdentity();
      glu.gluPerspective(60, 1.0, 0.1, 100);
      gl.glMatrixMode(GL_MODELVIEW);

      allocateBigArray(true);
      allocateBuffers();

      sinArray = new float[SIN_ARRAY_SIZE];
      cosArray = new float[SIN_ARRAY_SIZE];
    
      for (int i = 0; i < SIN_ARRAY_SIZE; i++) {
        double step = i * 2 * Math.PI / SIN_ARRAY_SIZE;
        sinArray[i] = (float) Math.sin(step);
        cosArray[i] = (float) Math.cos(step);
      }

      if (getFlag('v')) {
        gl.glEnableClientState(GL_VERTEX_ARRAY_RANGE_NV);
        gl.glVertexArrayRangeNV(bufferSize, bigArrayVar);
      }
      gl.glEnableClientState(GL_VERTEX_ARRAY);
      gl.glEnableClientState(GL_NORMAL_ARRAY);

      computeElements();

      drawable.addKeyListener(new KeyAdapter() {
          public void keyTyped(KeyEvent e) {
            dispatchKey(e.getKeyChar());
          }
        });
    }

    private void allocateBuffers() {
      buffers = new VarBuffer[numBuffers];

      int sliceSize = bufferLength / numBuffers;
      int[] fences = new int[1];
      for (int i = 0; i < numBuffers; i++) {
        buffers[i] = new VarBuffer();
        int startIndex = i * sliceSize;
	buffers[i].fastVertices = sliceBuffer(bigArrayVar, startIndex, sliceSize);
	buffers[i].fastNormals  = sliceBuffer(buffers[i].fastVertices, 3,
					      buffers[i].fastVertices.limit() - 3);
        buffers[i].slowVertices = new float[sliceSize];
        buffers[i].slowNormals  = new float[sliceSize];
	gl.glGenFencesNV(1, fences);
	buffers[i].fence = fences[0];
      }
    }

    private void dispatchKey(char k) {
      setFlag(k, !getFlag(k));
      // Quit on escape or 'q'
      if ((k == (char) 27) || (k == 'q')) {
        System.exit(0);
      }
    
      if (k == 'r') {
        if (getFlag(k)) {
          profiledFrameCount = 0;
          numDrawElementsCalls = 0;
          firstProfiledFrame = true;
        }
      }

      if (k == 'w') {
        if (getFlag(k)) {
          primitive = GL_LINE_STRIP;
        } else {
          primitive = GL_QUAD_STRIP;
        }
      }

      if (k == 'p') {
        if (getFlag(k)) {
          primitive = GL_POINTS;
        } else {
          primitive = GL_QUAD_STRIP;
        }
      }

      if (k == 'v') {
        mustChangeState = true;
      }
    
      if (k == 'd') {
        if (getFlag(k)) {
          gl.glDisable(GL_LIGHTING);
        } else {
          gl.glEnable(GL_LIGHTING);
        }
      }
      
      if (k == 'i') {
        if(getFlag(k)) {
          // infinite light
          gl.glLightfv(GL_LIGHT0, GL_POSITION, new float[] { .5f, 0, .5f, 0 });
          gl.glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 0);
        } else {
          gl.glLightfv(GL_LIGHT0, GL_POSITION, new float[] { .5f, 0, -.5f,1 });
          gl.glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 1);
        }
      }

      if('h'==k)
        hicoef += .005;
      if('H'==k)
        hicoef -= .005;
      if('l'==k)
        locoef += .005;
      if('L'==k)
        locoef -= .005;
      if('1'==k)
        lofreq += .1f;
      if('2'==k)
        lofreq -= .1f;
      if('3'==k)
        hifreq += .1f;
      if('4'==k)
        hifreq -= .1f;
      if('5'==k)
        phaseRate += .01f;
      if('6'==k)
        phaseRate -= .01f;
      if('7'==k)
        phase2Rate += .01f;
      if('8'==k)
        phase2Rate -= .01f;

      if('t'==k) {
        if(tileSize < 864) {
          tileSize += STRIP_SIZE;
          computeElements();
          System.err.println("tileSize = " + tileSize);
        }
      }

      if('T'==k) {
        if(tileSize > STRIP_SIZE) { 
          tileSize -= STRIP_SIZE;
          computeElements();
          System.err.println("tileSize = " + tileSize);
        }
      }
    }

    public void display(GLDrawable drawable) {
      // Check to see whether to animate
      if (getFlag(' ')) {
        phase += phaseRate;
        phase2 += phase2Rate;
      
        if (phase > (float) (20 * Math.PI)) {
          phase = 0;
        }

        if (phase2 < (float) (-20 * Math.PI)) {
          phase2 = 0;
        }
      }

      PeriodicIterator loX =
        new PeriodicIterator(SIN_ARRAY_SIZE, (float) (2 * Math.PI), phase, (float) ((1.f/tileSize)*lofreq*Math.PI));
      PeriodicIterator loY = new PeriodicIterator(loX);
      PeriodicIterator hiX =
        new PeriodicIterator(SIN_ARRAY_SIZE, (float) (2 * Math.PI), phase2, (float) ((1.f/tileSize)*hifreq*Math.PI));
      PeriodicIterator hiY = new PeriodicIterator(hiX);
    
      if (mustChangeState) {
        if (getFlag('v')) {
          gl.glEnableClientState(GL_VERTEX_ARRAY_RANGE_NV);
          gl.glVertexArrayRangeNV(bufferSize, bigArrayVar);
        } else {
          gl.glDisableClientState(GL_VERTEX_ARRAY_RANGE_NV);
        }
        mustChangeState = false;
      }

      gl.glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    
      gl.glPushMatrix();

      gl.glLoadMatrixf(new float[] {
        1, 0, 0, 0,
        0, 1, 0, 0,
        0, 0, 1, 0,
        0, 0, -1, 1
      });

      // FIXME: add mouse interaction
      // camera.apply_inverse_transform();
      // object.apply_transform();

      int cur = 0;
      int numSlabs = tileSize / STRIP_SIZE;

      // Fast case/slow case split. The reason for this is to avoid
      // any potential problems with the compilers not being able to
      // inline the native array accesses if more than one subclass of
      // FloatArray is loaded.

      if (getFlag('v')) {
        // Fast case
        for(int slab = 0; slab < numSlabs; slab++) {
          cur = slab % numBuffers;
          if (slab >= numBuffers) {
            if (!gl.glTestFenceNV(buffers[cur].fence)) {
              gl.glFinishFenceNV(buffers[cur].fence);
            }
          }

          FloatBuffer v = buffers[cur].fastVertices;
          int vertexIndex = 0;

          gl.glVertexPointer(3, GL_FLOAT, 6 * SIZEOF_FLOAT, v);
          gl.glNormalPointer(GL_FLOAT, 6 * SIZEOF_FLOAT, buffers[cur].fastNormals);

          for(int jj=0; jj < STRIP_SIZE; jj++) {
            ysinlo[jj] = sinArray[loY.getIndex()];
            ycoslo[jj] = cosArray[loY.getIndex()]; loY.incr();
            ysinhi[jj] = sinArray[hiY.getIndex()];
            ycoshi[jj] = cosArray[hiY.getIndex()]; hiY.incr();
          }
          loY.decr();
          hiY.decr();
        
          for(int i = 0; i < tileSize; i++) {
            float x = xyArray[i];
            int loXIndex = loX.getIndex();
            int hiXIndex = hiX.getIndex();

            int jOffset = (STRIP_SIZE-1)*slab;
            float nx = locoef * -cosArray[loXIndex] + hicoef * -cosArray[hiXIndex];

            // Help the HotSpot Client Compiler by hoisting loop
            // invariant variables into locals. Note that this may be
            // good practice for innermost loops anyway since under
            // the new memory model operations like accidental
            // synchronization may force any compiler to reload these
            // fields from memory, destroying their ability to
            // optimize.
            float locoef_tmp = locoef;
            float hicoef_tmp = hicoef;
            float[] ysinlo_tmp = ysinlo;
            float[] ysinhi_tmp = ysinhi;
            float[] ycoslo_tmp = ycoslo;
            float[] ycoshi_tmp = ycoshi;
            float[] sinArray_tmp = sinArray;
            float[] xyArray_tmp = xyArray;

            for(int j = 0; j < STRIP_SIZE; j++) {
              float y;
              
              y = xyArray_tmp[j + jOffset];

              float ny;

              v.put(vertexIndex, x);
              v.put(vertexIndex + 1, y);
              v.put(vertexIndex + 2, (locoef_tmp * (sinArray_tmp[loXIndex] + ysinlo_tmp[j]) + 
                                      hicoef_tmp * (sinArray_tmp[hiXIndex] + ysinhi_tmp[j])));
              v.put(vertexIndex + 3, nx);
              ny = locoef_tmp * -ycoslo_tmp[j] + hicoef_tmp * -ycoshi_tmp[j];
              v.put(vertexIndex + 4, ny);
              v.put(vertexIndex + 5, .15f); //.15f * (1.f - sqrt(nx * nx + ny * ny));
              vertexIndex += 6;
            }
            loX.incr();
            hiX.incr();
          }
          loX.reset();
          hiX.reset();

          for (int i = 0; i < elements.length; i++) {
            ++numDrawElementsCalls;
            gl.glDrawElements(primitive, elements[i].length, GL_UNSIGNED_INT, elements[i]);
            if(getFlag('f')) {
              gl.glFlush();
            }
          }
        
          gl.glSetFenceNV(buffers[cur].fence, GL_ALL_COMPLETED_NV);
        }
      } else {
        // Slow case
        for(int slab = 0; slab < numSlabs; slab++) {
          cur = slab % numBuffers;
          if (slab >= numBuffers) {
	    if (!gl.glTestFenceNV(buffers[cur].fence)) {
	      gl.glFinishFenceNV(buffers[cur].fence);
	    }
          }

          float[] v = buffers[cur].slowVertices;
          float[] n = buffers[cur].slowNormals;
          int vertexIndex = 0;

          for(int jj=0; jj < STRIP_SIZE; jj++) {
            ysinlo[jj] = sinArray[loY.getIndex()];
            ycoslo[jj] = cosArray[loY.getIndex()]; loY.incr();
            ysinhi[jj] = sinArray[hiY.getIndex()];
            ycoshi[jj] = cosArray[hiY.getIndex()]; hiY.incr();
          }
          loY.decr();
          hiY.decr();
        
          for(int i = 0; i < tileSize; i++) {
            float x = xyArray[i];
            int loXIndex = loX.getIndex();
            int hiXIndex = hiX.getIndex();

            int jOffset = (STRIP_SIZE-1)*slab;
            float nx = locoef * -cosArray[loXIndex] + hicoef * -cosArray[hiXIndex];

            // Help the HotSpot Client Compiler by hoisting loop
            // invariant variables into locals. Note that this may be
            // good practice for innermost loops anyway since under
            // the new memory model operations like accidental
            // synchronization may force any compiler to reload these
            // fields from memory, destroying their ability to
            // optimize.
            float locoef_tmp = locoef;
            float hicoef_tmp = hicoef;
            float[] ysinlo_tmp = ysinlo;
            float[] ysinhi_tmp = ysinhi;
            float[] ycoslo_tmp = ycoslo;
            float[] ycoshi_tmp = ycoshi;
            float[] sinArray_tmp = sinArray;
            float[] xyArray_tmp = xyArray;

            for(int j = 0; j < STRIP_SIZE; j++) {
              float y;

              y = xyArray_tmp[j + jOffset];

              float ny;

              v[vertexIndex] = x;
              v[vertexIndex + 1] = y;
              v[vertexIndex + 2] = (locoef_tmp * (sinArray_tmp[loXIndex] + ysinlo_tmp[j]) + 
                                    hicoef_tmp * (sinArray_tmp[hiXIndex] + ysinhi_tmp[j]));
              n[vertexIndex] = nx;
              n[vertexIndex + 1] = ny = locoef_tmp * -ycoslo_tmp[j] + hicoef_tmp * -ycoshi_tmp[j];
              n[vertexIndex + 2] = .15f; //.15f * (1.f - sqrt(nx * nx + ny * ny));

              vertexIndex += 3;
            }
            loX.incr();
            hiX.incr();
          }
          loX.reset();
          hiX.reset();

          // NOTE: these calls are not safe because the OpenGL for
          // Java implementation uses the JNI
          // GetPrimitiveArrayCritical routine to fetch the arrays'
          // storage. If a garbage collection occurs between or during
          // the glVertexPointer and glDrawElements calls, the arrays
          // may move, leading to incorrect data being drawn or
          // possibly a crash. Future applications should always use
          // java.nio direct buffers for the storage passed down to
          // glVertexPointer and similar routines taking persistent
          // pointers, regardless of whether an extension like
          // NVidia's vertex array range is used. Direct buffers can
          // be created with ByteBuffer.allocateDirect().
          gl.glVertexPointer(3, GL_FLOAT, 3 * SIZEOF_FLOAT, v);
          gl.glNormalPointer(GL_FLOAT, 3 * SIZEOF_FLOAT, n);

          for (int i = 0; i < elements.length; i++) {
            ++numDrawElementsCalls;
            gl.glDrawElements(primitive, elements[i].length, GL_UNSIGNED_INT, elements[i]);
            if(getFlag('f')) {
              gl.glFlush();
            }
          }

	  gl.glSetFenceNV(buffers[cur].fence, GL_ALL_COMPLETED_NV);
        }
      }

      gl.glPopMatrix();

      gl.glFinishFenceNV(buffers[cur].fence);

      if (getFlag('r')) {
        if (!firstProfiledFrame) {
          if (++profiledFrameCount == 30) {
            long endTimeMillis = System.currentTimeMillis();
            double secs = (endTimeMillis - startTimeMillis) / 1000.0;
            double fps  = 30.0 / secs;
            double ppf  = tileSize * tileSize * 2;
            double mpps = ppf * fps / 1000000.0;
            System.err.println("fps: " + fps + " polys/frame: " + ppf + " million polys/sec: " + mpps +
                               " DrawElements calls/frame: " + (numDrawElementsCalls / 30));
            profiledFrameCount = 0;
            numDrawElementsCalls = 0;
            startTimeMillis = System.currentTimeMillis();
          }
        } else {
          startTimeMillis = System.currentTimeMillis();
          firstProfiledFrame = false;
        
        }
      }
    }

    // Unused routines
    public void cleanup(GLDrawable drawable) {}
    public void preDisplay(GLDrawable drawable) {}
    public void postDisplay(GLDrawable drawable) {}
    public void reshape(GLDrawable drawable, int width, int height) {}
  }

  private void allocateBigArray(boolean tryAgain) {
    float priority = .5f;

    float megabytes = (bufferSize / 1000000.f);
    try {
      bigArrayVar = setupBuffer(gl.glAllocateMemoryNV(bufferSize, 0, 0, priority));
    }
    catch (OutOfMemoryError e1) {
      // Try a higher priority
      try {
	bigArrayVar = setupBuffer(gl.glAllocateMemoryNV(bufferSize, 0, 0, 1.f));
      }
      catch (OutOfMemoryError e2) {
        if (!tryAgain) {
          throw new RuntimeException("Unable to allocate " + megabytes +
                                     " megabytes of fast memory. Giving up.");
        }

        System.err.println("Unable to allocate " + megabytes +
                           " megabytes of fast memory. Trying less.");
        bufferSize /= 2;
        numBuffers /= 2;
        allocateBigArray(false);
        return;
      }
    }

    System.err.println("Allocated " + megabytes + " megabytes of fast memory");
  }

  private FloatBuffer setupBuffer(ByteBuffer buf) {
    buf.order(ByteOrder.nativeOrder());
    return buf.asFloatBuffer();
  }

  private FloatBuffer sliceBuffer(FloatBuffer array,
                                  int sliceStartIndex, int sliceLength) {
    array.position(sliceStartIndex);
    FloatBuffer ret = array.slice();
    array.position(0);
    ret.limit(sliceLength);
    return ret;
  }

  private void computeElements() {
    xyArray = new float[tileSize];
    for (int i = 0; i < tileSize; i++) {
      xyArray[i] = i / (tileSize - 1.0f) - 0.5f;
    }

    elements = new int[tileSize - 1][];
    for (int i = 0; i < tileSize - 1; i++) {
      elements[i] = new int[2 * STRIP_SIZE];
      for (int j = 0; j < 2 * STRIP_SIZE; j += 2) {
        elements[i][j]   =  i      * STRIP_SIZE + (j / 2);
        elements[i][j+1] = (i + 1) * STRIP_SIZE + (j / 2);
      }
    }
  }
}