1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
|
/*
* Copyright 1996-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
package javax.media.j3d;
import javax.vecmath.Matrix3d;
import javax.vecmath.Point3d;
import javax.vecmath.Point4d;
import javax.vecmath.Vector3d;
import javax.vecmath.Vector4d;
/**
* The abstract base class for bounds objects. Bounds objects define
* a convex, closed volume that is used for various intersection and
* culling operations.
*/
public abstract class Bounds extends Object implements Cloneable {
static final double EPSILON = .000001;
static final boolean debug = false;
static final int BOUNDING_BOX = 0x1;
static final int BOUNDING_SPHERE = 0x2;
static final int BOUNDING_POLYTOPE = 0x4;
boolean boundsIsEmpty = false;
boolean boundsIsInfinite = false;
int boundId = 0;
/**
* Constructs a new Bounds object.
*/
public Bounds() {
}
/**
* Makes a copy of a bounds object.
*/
@Override
public abstract Object clone();
/**
* Indicates whether the specified <code>bounds</code> object is
* equal to this Bounds object. They are equal if both the
* specified <code>bounds</code> object and this Bounds are
* instances of the same Bounds subclass and all of the data
* members of <code>bounds</code> are equal to the corresponding
* data members in this Bounds.
* @param bounds the object with which the comparison is made.
* @return true if this Bounds object is equal to <code>bounds</code>;
* otherwise false
*
* @since Java 3D 1.2
*/
@Override
public abstract boolean equals(Object bounds);
/**
* Returns a hash code for this Bounds object based on the
* data values in this object. Two different Bounds objects of
* the same type with identical data values (i.e., Bounds.equals
* returns true) will return the same hash code. Two Bounds
* objects with different data members may return the same hash code
* value, although this is not likely.
* @return a hash code for this Bounds object.
*
* @since Java 3D 1.2
*/
@Override
public abstract int hashCode();
/**
* Test for intersection with a ray.
* @param origin the starting point of the ray
* @param direction the direction of the ray
* @return true or false indicating if an intersection occured
*/
public abstract boolean intersect( Point3d origin, Vector3d direction );
/**
* Test for intersection with a point.
* @param point a point defining a position in 3-space
* @return true or false indicating if an intersection occured
*/
public abstract boolean intersect( Point3d point );
/**
* Test for intersection with a ray
* @param origin is a the starting point of the ray
* @param direction is the direction of the ray
* @param position is a point defining the location of the pick w= distance to pick
* @return true or false indicating if an intersection occured
*/
abstract boolean intersect( Point3d origin, Vector3d direction, Point4d position );
/**
* Test for intersection with a point
* @param point is a point defining a position in 3-space
* @param position is a point defining the location of the pick w= distance to pick
* @return true or false indicating if an intersection occured
*/
abstract boolean intersect( Point3d point, Point4d position);
/**
* Test for intersection with a segment
* @param start is a point defining the start of the line segment
* @param end is a point defining the end of the line segment
* @param position is a point defining the location of the pick w= distance to pick
* @return true or false indicating if an intersection occured
*/
abstract boolean intersect( Point3d start, Point3d end, Point4d position );
/**
* Test for intersection with another bounds object
*
* Test for intersection with another bounds object
* @param boundsObject is another bounds object
* @return true or false indicating if an intersection occured
*/
abstract boolean intersect( Bounds boundsObject, Point4d position );
/**
* Test for intersection with another bounds object.
* @param boundsObject another bounds object
* @return true or false indicating if an intersection occurred
*/
public abstract boolean intersect( Bounds boundsObject );
/**
* Test for intersection with another bounds object.
* @param boundsObjects an array of bounding objects
* @return true or false indicating if an intersection occured
*/
public abstract boolean intersect( Bounds[] boundsObjects );
/**
* Finds closest bounding object that intersects this bounding object.
* @param boundsObjects an array of bounds objects
* @return closest bounding object
*/
public abstract Bounds closestIntersection( Bounds[] boundsObjects);
/**
* Returns the center of the bounds
* @return bounds center
*/
abstract Point3d getCenter();
/**
* Gets the centroid of this bounding region.
* @param center a Point to receive the centroid of the bounding region
*/
public abstract void getCenter(Point3d center);
/**
* Combines this bounding object with a bounding object so that the
* resulting bounding object encloses the original bounding object and the
* given bounds object.
* @param boundsObject another bounds object
*/
public abstract void combine( Bounds boundsObject );
/**
* Combines this bounding object with an array of bounding objects so that the
* resulting bounding object encloses the original bounding object and the
* given array of bounds object.
* @param boundsObjects an array of bounds objects
*/
public abstract void combine( Bounds[] boundsObjects);
/**
* Combines this bounding object with a point.
* @param point a 3d point in space
*/
public abstract void combine( Point3d point);
/**
* Combines this bounding object with an array of points.
* @param points an array of 3d points in space
*/
public abstract void combine( Point3d[] points);
/**
* Transforms this bounding object by the given matrix.
* @param trans the transformation matrix
*/
public abstract void transform(Transform3D trans);
/**
* Modifies the bounding object so that it bounds the volume
* generated by transforming the given bounding object.
* @param bounds the bounding object to be transformed
* @param trans the transformation matrix
*/
public abstract void transform( Bounds bounds, Transform3D trans);
/**
* Tests whether the bounds is empty. A bounds is
* empty if it is null (either by construction or as the result of
* a null intersection) or if its volume is negative. A bounds
* with a volume of zero is <i>not</i> empty.
* @return true if the bounds is empty; otherwise, it returns false
*/
public abstract boolean isEmpty();
/**
* Sets the value of this Bounds object.
* @param boundsObject another bounds object.
*/
public abstract void set( Bounds boundsObject);
abstract Bounds copy(Bounds region);
private void test_point(Vector4d[] planes, Point3d new_point) {
for (int i = 0; i < planes.length; i++){
double dist = (new_point.x*planes[i].x + new_point.y*planes[i].y +
new_point.z*planes[i].z + planes[i].w ) ;
if (dist > EPSILON ){
System.err.println("new point is outside of" +
" plane["+i+"] dist = " + dist);
}
}
}
/**
* computes the closest point from the given point to a set of planes
* (polytope)
* @param g the point
* @param planes array of bounding planes
* @param new_point point on planes closest g
*/
boolean closest_point( Point3d g, Vector4d[] planes, Point3d new_point ) {
double t,s,dist,w;
boolean converged, inside, firstPoint, firstInside;
int i,count;
double ab,ac,bc,ad,bd,cd,aa,bb,cc;
double b1,b2,b3,d1,d2,d3,y1,y2,y3;
double h11,h12,h13,h22,h23,h33;
double l12,l13,l23;
Point3d n = new Point3d();
Point3d p = new Point3d();
Vector3d delta = null;
// These are temporary until the solve code is working
/*
* The algorithm:
* We want to find the point "n", closest to "g", while still within
* the the polytope defined by "planes". We find the solution by
* minimizing the value for a "penalty function";
*
* f = distance(n,g)^2 + sum for each i: w(distance(n, planes[i]))
*
* Where "w" is a weighting which indicates how much more important
* it is to be close to the planes than it is to be close to "g".
*
* We minimize this function by taking it's derivitive, and then
* solving for the value of n when the derivitive equals 0.
*
* For the 1D case with a single plane (a,b,c,d), x = n.x and g = g.x,
* this looks like:
*
* f(x) = (x - g) ^ 2 + w(ax + d)^2
* f'(x) = 2x -2g + 2waax + 2wad
*
* (note aa = a^2) setting f'(x) = 0 gives:
*
* (1 + waa)x = g - wad
*
* Note that the solution is just outside the plane [a, d]. With the
* correct choice of w, this should be inside of the EPSILON tolerance
* outside the planes.
*
* Extending to 3D gives the matrix solution:
*
* | (1 + waa) wab wac |
* H = | wab (1 + wbb) wbc |
* | wac wbc (1 + wcc) |
*
* b = [g.x - wad, g.y - wbd, g.z - wcd]
*
* H * n = b
*
* n = b * H.inverse()
*
* The implementation speeds this process up by recognizing that
* H is symmetric, so that it can be decomposed into three matrices:
*
* H = L * D * L.transpose()
*
* 1.0 0.0 0.0 d1 0.0 0.0
* L = l12 1.0 0.0 D = 0.0 d2 0.0
* l13 l23 1.0 0.0 0.0 d3
*
* n can then be derived by back-substitution, where the original
* problem is decomposed as:
*
* H * n = b
* L * D * L.transpose() * n = b
* L * D * y = b; L.transpose() * n = y
*
* We can then multiply out the terms of L * D and solve for y, and
* then use y to solve for n.
*/
w=100.0 / EPSILON; // must be large enough to ensure that solution
// is within EPSILON of planes
count = 0;
p.set(g);
if (debug) {
System.err.println("closest_point():\nincoming g="+" "+g.x+" "+g.y+
" "+g.z);
}
converged = false;
firstPoint = true;
firstInside = false;
Vector4d pln;
while( !converged ) {
if (debug) {
System.err.println("start: p="+" "+p.x+" "+p.y+" "+p.z);
}
// test the current point against the planes, for each
// plane that is violated, add it's contribution to the
// penalty function
inside = true;
aa=0.0; bb=0.0; cc=0.0;
ab=0.0; ac=0.0; bc=0.0; ad=0.0; bd=0.0; cd=0.0;
for(i = 0; i < planes.length; i++){
pln = planes[i];
dist = (p.x*pln.x + p.y*pln.y +
p.z*pln.z + pln.w ) ;
// if point is outside or within EPSILON of the boundary, add
// the plane to the penalty matrix. We do this even if the
// point is already inside the polytope to prevent numerical
// instablity in cases where the point is just outside the
// boundary of several planes of the polytope
if (dist > -EPSILON ){
aa = aa + pln.x * pln.x;
bb = bb + pln.y * pln.y;
cc = cc + pln.z * pln.z;
ab = ab + pln.x * pln.y;
ac = ac + pln.x * pln.z;
bc = bc + pln.y * pln.z;
ad = ad + pln.x * pln.w;
bd = bd + pln.y * pln.w;
cd = cd + pln.z * pln.w;
}
// If the point is inside if dist is <= EPSILON
if (dist > EPSILON ){
inside = false;
if (debug) {
System.err.println("point outside plane["+i+"]=("+
pln.x+ ","+pln.y+",\n\t"+pln.z+
","+ pln.w+")\ndist = " + dist);
}
}
}
// see if we are done
if (inside) {
if (debug) {
System.err.println("p is inside");
}
if (firstPoint) {
firstInside = true;
}
new_point.set(p);
converged = true;
} else { // solve for a closer point
firstPoint = false;
// this is the upper right corner of H, which is all we
// need to do the decomposition since the matrix is symetric
h11 = 1.0 + aa * w;
h12 = ab * w;
h13 = ac * w;
h22 = 1.0 + bb * w;
h23 = bc * w;
h33 = 1.0 + cc * w;
if (debug) {
System.err.println(" hessin= ");
System.err.println(h11+" "+h12+" "+h13);
System.err.println(" "+h22+" "+h23);
System.err.println(" "+h33);
}
// these are the constant terms
b1 = g.x - w * ad;
b2 = g.y - w * bd;
b3 = g.z - w * cd;
if (debug) {
System.err.println(" b1,b2,b3 = "+b1+" "+b2+" " +b3);
}
// solve, d1, d2, d3 actually 1/dx, which is more useful
d1 = 1/h11;
l12 = d1 * h12;
l13 = d1 * h13;
s = h22-l12*h12;
d2 = 1/s;
t = h23-h12*l13;
l23 = d2 * t;
d3 = 1/(h33 - h13*l13 - t*l23);
if (debug) {
System.err.println(" l12,l13,l23 "+l12+" "+l13+" "+l23);
System.err.println(" d1,d2,d3 "+ d1+" "+d2+" "+d3);
}
// we have L and D, now solve for y
y1 = d1 * b1;
y2 = d2 * (b2 - h12*y1);
y3 = d3 * (b3 - h13*y1 - t*y2);
if (debug) {
System.err.println(" y1,y2,y3 = "+y1+" "+y2+" "+y3);
}
// we have y, solve for n
n.z = y3;
n.y = (y2 - l23*n.z);
n.x = (y1 - l13*n.z - l12*n.y);
if (debug) {
System.err.println("new point = " + n.x+" " + n.y+" " +
n.z);
test_point(planes, n);
if (delta == null) delta = new Vector3d();
delta.sub(n, p);
delta.normalize();
System.err.println("p->n direction: " + delta);
Matrix3d hMatrix = new Matrix3d();
// check using the the javax.vecmath routine
hMatrix.m00 = h11;
hMatrix.m01 = h12;
hMatrix.m02 = h13;
hMatrix.m10 = h12; // h21 = h12
hMatrix.m11 = h22;
hMatrix.m12 = h23;
hMatrix.m20 = h13; // h31 = h13
hMatrix.m21 = h23; // h32 = h22
hMatrix.m22 = h33;
hMatrix.invert();
Point3d check = new Point3d(b1, b2, b3);
hMatrix.transform(check);
System.err.println("check point = " + check.x+" " +
check.y+" " + check.z);
}
// see if we have converged yet
dist = (p.x-n.x)*(p.x-n.x) + (p.y-n.y)*(p.y-n.y) +
(p.z-n.z)*(p.z-n.z);
if (debug) {
System.err.println("p->n distance =" + dist );
}
if( dist < EPSILON) { // close enough
converged = true;
new_point.set(n);
} else {
p.set(n);
count++;
if(count > 4 ){ // watch for cycling between two minimums
new_point.set(n);
converged = true;
}
}
}
}
if (debug) {
System.err.println("returning pnt ("+new_point.x+" "+
new_point.y+" "+new_point.z+")");
if(firstInside) System.err.println("input point inside polytope ");
}
return firstInside;
}
boolean intersect_ptope_sphere( BoundingPolytope polyTope,
BoundingSphere sphere) {
Point3d p = new Point3d();
boolean inside;
if (debug) {
System.err.println("ptope_sphere intersect sphere ="+sphere);
}
inside = closest_point( sphere.center, polyTope.planes, p );
if (debug) {
System.err.println("ptope sphere intersect point ="+p);
}
if (!inside){
// if distance between polytope and sphere center is greater than
// radius then no intersection
if (p.distanceSquared( sphere.center) >
sphere.radius*sphere.radius){
if (debug) {
System.err.println("ptope_sphere returns false");
}
return false;
} else {
if (debug) {
System.err.println("ptope_sphere returns true");
}
return true;
}
} else {
if (debug) {
System.err.println("ptope_sphere returns true");
}
return true;
}
}
boolean intersect_ptope_abox( BoundingPolytope polyTope, BoundingBox box) {
Vector4d planes[] = new Vector4d[6];
if (debug) {
System.err.println("ptope_abox, box = " + box);
}
planes[0] = new Vector4d( -1.0, 0.0, 0.0, box.lower.x);
planes[1] = new Vector4d( 1.0, 0.0, 0.0,-box.upper.x);
planes[2] = new Vector4d( 0.0,-1.0, 0.0, box.lower.y);
planes[3] = new Vector4d( 0.0, 1.0, 0.0,-box.upper.y);
planes[4] = new Vector4d( 0.0, 0.0,-1.0, box.lower.z);
planes[5] = new Vector4d( 0.0, 0.0, 1.0,-box.upper.z);
BoundingPolytope pbox = new BoundingPolytope( planes);
boolean result = intersect_ptope_ptope( polyTope, pbox );
if (debug) {
System.err.println("ptope_abox returns " + result);
}
return(result);
}
boolean intersect_ptope_ptope( BoundingPolytope poly1,
BoundingPolytope poly2) {
boolean intersect;
Point3d p = new Point3d();
Point3d g = new Point3d();
Point3d gnew = new Point3d();
Point3d pnew = new Point3d();
intersect = false;
p.x = 0.0;
p.y = 0.0;
p.z = 0.0;
// start from an arbitrary point on poly1
closest_point( p, poly1.planes, g);
// get the closest points on each polytope
if (debug) {
System.err.println("ptope_ptope: first g = "+g);
}
intersect = closest_point( g, poly2.planes, p);
if (intersect) {
return true;
}
if (debug) {
System.err.println("first p = "+p+"\n");
}
intersect = closest_point( p, poly1.planes, gnew);
if (debug) {
System.err.println("gnew = "+gnew+" intersect="+intersect);
}
// loop until the closest points on the two polytopes are not changing
double prevDist = p.distanceSquared(g);
double dist;
while( !intersect ) {
dist = p.distanceSquared(gnew);
if (dist < prevDist) {
g.set(gnew);
intersect = closest_point( g, poly2.planes, pnew );
if (debug) {
System.err.println("pnew = "+pnew+" intersect="+intersect);
}
} else {
g.set(gnew);
break;
}
prevDist = dist;
dist = pnew.distanceSquared(g);
if (dist < prevDist) {
p.set(pnew);
if( !intersect ) {
intersect = closest_point( p, poly1.planes, gnew );
if (debug) {
System.err.println("gnew = "+gnew+" intersect="+
intersect);
}
}
} else {
p.set(pnew);
break;
}
prevDist = dist;
}
if (debug) {
System.err.println("gnew="+" "+gnew.x+" "+gnew.y+" "+gnew.z);
System.err.println("pnew="+" "+pnew.x+" "+pnew.y+" "+pnew.z);
}
return intersect;
}
synchronized void setWithLock(Bounds b) {
this.set(b);
}
synchronized void getWithLock(Bounds b) {
b.set(this);
}
// Return one of Pick Bounds type define in PickShape
abstract int getPickType();
}
|