summaryrefslogtreecommitdiffstats
path: root/src/org/jogamp/vecmath/Matrix3f.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/org/jogamp/vecmath/Matrix3f.java')
-rw-r--r--src/org/jogamp/vecmath/Matrix3f.java2311
1 files changed, 2311 insertions, 0 deletions
diff --git a/src/org/jogamp/vecmath/Matrix3f.java b/src/org/jogamp/vecmath/Matrix3f.java
new file mode 100644
index 0000000..9b2ebb3
--- /dev/null
+++ b/src/org/jogamp/vecmath/Matrix3f.java
@@ -0,0 +1,2311 @@
+/*
+ * Copyright 1996-2008 Sun Microsystems, Inc. All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Sun designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Sun in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+package org.jogamp.vecmath;
+
+
+/**
+ * A single precision floating point 3 by 3 matrix.
+ * Primarily to support 3D rotations.
+ *
+ */
+public class Matrix3f implements java.io.Serializable, Cloneable {
+
+ // Compatible with 1.1
+ static final long serialVersionUID = 329697160112089834L;
+
+ /**
+ * The first matrix element in the first row.
+ */
+ public float m00;
+
+ /**
+ * The second matrix element in the first row.
+ */
+ public float m01;
+
+ /**
+ * The third matrix element in the first row.
+ */
+ public float m02;
+
+ /**
+ * The first matrix element in the second row.
+ */
+ public float m10;
+
+ /**
+ * The second matrix element in the second row.
+ */
+ public float m11;
+
+ /**
+ * The third matrix element in the second row.
+ */
+ public float m12;
+
+ /**
+ * The first matrix element in the third row.
+ */
+ public float m20;
+
+ /**
+ * The second matrix element in the third row.
+ */
+ public float m21;
+
+ /**
+ * The third matrix element in the third row.
+ */
+ public float m22;
+ /*
+ double[] tmp = new double[9]; // scratch matrix
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+ */
+ private static final double EPS = 1.0E-8;
+
+
+
+ /**
+ * Constructs and initializes a Matrix3f from the specified nine values.
+ * @param m00 the [0][0] element
+ * @param m01 the [0][1] element
+ * @param m02 the [0][2] element
+ * @param m10 the [1][0] element
+ * @param m11 the [1][1] element
+ * @param m12 the [1][2] element
+ * @param m20 the [2][0] element
+ * @param m21 the [2][1] element
+ * @param m22 the [2][2] element
+ */
+ public Matrix3f(float m00, float m01, float m02,
+ float m10, float m11, float m12,
+ float m20, float m21, float m22)
+ {
+ this.m00 = m00;
+ this.m01 = m01;
+ this.m02 = m02;
+
+ this.m10 = m10;
+ this.m11 = m11;
+ this.m12 = m12;
+
+ this.m20 = m20;
+ this.m21 = m21;
+ this.m22 = m22;
+
+ }
+
+ /**
+ * Constructs and initializes a Matrix3f from the specified
+ * nine-element array. this.m00 =v[0], this.m01=v[1], etc.
+ * @param v the array of length 9 containing in order
+ */
+ public Matrix3f(float[] v)
+ {
+ this.m00 = v[ 0];
+ this.m01 = v[ 1];
+ this.m02 = v[ 2];
+
+ this.m10 = v[ 3];
+ this.m11 = v[ 4];
+ this.m12 = v[ 5];
+
+ this.m20 = v[ 6];
+ this.m21 = v[ 7];
+ this.m22 = v[ 8];
+
+ }
+
+ /**
+ * Constructs a new matrix with the same values as the
+ * Matrix3d parameter.
+ * @param m1 the source matrix
+ */
+ public Matrix3f(Matrix3d m1)
+ {
+ this.m00 = (float)m1.m00;
+ this.m01 = (float)m1.m01;
+ this.m02 = (float)m1.m02;
+
+ this.m10 = (float)m1.m10;
+ this.m11 = (float)m1.m11;
+ this.m12 = (float)m1.m12;
+
+ this.m20 = (float)m1.m20;
+ this.m21 = (float)m1.m21;
+ this.m22 = (float)m1.m22;
+
+ }
+
+
+ /**
+ * Constructs a new matrix with the same values as the
+ * Matrix3f parameter.
+ * @param m1 the source matrix
+ */
+ public Matrix3f(Matrix3f m1)
+ {
+ this.m00 = m1.m00;
+ this.m01 = m1.m01;
+ this.m02 = m1.m02;
+
+ this.m10 = m1.m10;
+ this.m11 = m1.m11;
+ this.m12 = m1.m12;
+
+ this.m20 = m1.m20;
+ this.m21 = m1.m21;
+ this.m22 = m1.m22;
+
+ }
+
+
+ /**
+ * Constructs and initializes a Matrix3f to all zeros.
+ */
+ public Matrix3f()
+ {
+ this.m00 = (float) 0.0;
+ this.m01 = (float) 0.0;
+ this.m02 = (float) 0.0;
+
+ this.m10 = (float) 0.0;
+ this.m11 = (float) 0.0;
+ this.m12 = (float) 0.0;
+
+ this.m20 = (float) 0.0;
+ this.m21 = (float) 0.0;
+ this.m22 = (float) 0.0;
+
+ }
+
+ /**
+ * Returns a string that contains the values of this Matrix3f.
+ * @return the String representation
+ */
+ @Override
+ public String toString() {
+ return
+ this.m00 + ", " + this.m01 + ", " + this.m02 + "\n" +
+ this.m10 + ", " + this.m11 + ", " + this.m12 + "\n" +
+ this.m20 + ", " + this.m21 + ", " + this.m22 + "\n";
+ }
+
+ /**
+ * Sets this Matrix3f to identity.
+ */
+ public final void setIdentity()
+ {
+ this.m00 = (float) 1.0;
+ this.m01 = (float) 0.0;
+ this.m02 = (float) 0.0;
+
+ this.m10 = (float) 0.0;
+ this.m11 = (float) 1.0;
+ this.m12 = (float) 0.0;
+
+ this.m20 = (float) 0.0;
+ this.m21 = (float) 0.0;
+ this.m22 = (float) 1.0;
+ }
+
+ /**
+ * Sets the scale component of the current matrix by factoring
+ * out the current scale (by doing an SVD) and multiplying by
+ * the new scale.
+ * @param scale the new scale amount
+ */
+ public final void setScale(float scale)
+ {
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ this.m00 = (float)(tmp_rot[0] * scale);
+ this.m01 = (float)(tmp_rot[1] * scale);
+ this.m02 = (float)(tmp_rot[2] * scale);
+
+ this.m10 = (float)(tmp_rot[3] * scale);
+ this.m11 = (float)(tmp_rot[4] * scale);
+ this.m12 = (float)(tmp_rot[5] * scale);
+
+ this.m20 = (float)(tmp_rot[6] * scale);
+ this.m21 = (float)(tmp_rot[7] * scale);
+ this.m22 = (float)(tmp_rot[8] * scale);
+
+ }
+
+ /**
+ * Sets the specified element of this matrix3f to the value provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param column the column number to be modified (zero indexed)
+ * @param value the new value
+ */
+ public final void setElement(int row, int column, float value)
+ {
+ switch (row)
+ {
+ case 0:
+ switch(column)
+ {
+ case 0:
+ this.m00 = value;
+ break;
+ case 1:
+ this.m01 = value;
+ break;
+ case 2:
+ this.m02 = value;
+ break;
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f0"));
+ }
+ break;
+
+ case 1:
+ switch(column)
+ {
+ case 0:
+ this.m10 = value;
+ break;
+ case 1:
+ this.m11 = value;
+ break;
+ case 2:
+ this.m12 = value;
+ break;
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f0"));
+ }
+ break;
+
+ case 2:
+ switch(column)
+ {
+ case 0:
+ this.m20 = value;
+ break;
+ case 1:
+ this.m21 = value;
+ break;
+ case 2:
+ this.m22 = value;
+ break;
+ default:
+
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f0"));
+ }
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f0"));
+ }
+ }
+
+ /**
+ * Copies the matrix values in the specified row into the vector parameter.
+ * @param row the matrix row
+ * @param v the vector into which the matrix row values will be copied
+ */
+ public final void getRow(int row, Vector3f v) {
+ if( row == 0 ) {
+ v.x = m00;
+ v.y = m01;
+ v.z = m02;
+ } else if(row == 1) {
+ v.x = m10;
+ v.y = m11;
+ v.z = m12;
+ } else if(row == 2) {
+ v.x = m20;
+ v.y = m21;
+ v.z = m22;
+ } else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f1"));
+ }
+
+ }
+
+ /**
+ * Copies the matrix values in the specified row into the array parameter.
+ * @param row the matrix row
+ * @param v the array into which the matrix row values will be copied
+ */
+ public final void getRow(int row, float v[]) {
+ if( row == 0 ) {
+ v[0] = m00;
+ v[1] = m01;
+ v[2] = m02;
+ } else if(row == 1) {
+ v[0] = m10;
+ v[1] = m11;
+ v[2] = m12;
+ } else if(row == 2) {
+ v[0] = m20;
+ v[1] = m21;
+ v[2] = m22;
+ } else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f1"));
+ }
+
+ }
+
+ /**
+ * Copies the matrix values in the specified column into the vector
+ * parameter.
+ * @param column the matrix column
+ * @param v the vector into which the matrix row values will be copied
+ */
+ public final void getColumn(int column, Vector3f v) {
+ if( column == 0 ) {
+ v.x = m00;
+ v.y = m10;
+ v.z = m20;
+ } else if(column == 1) {
+ v.x = m01;
+ v.y = m11;
+ v.z = m21;
+ }else if(column == 2){
+ v.x = m02;
+ v.y = m12;
+ v.z = m22;
+ } else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f3"));
+ }
+
+ }
+
+ /**
+ * Copies the matrix values in the specified column into the array
+ * parameter.
+ * @param column the matrix column
+ * @param v the array into which the matrix row values will be copied
+ */
+ public final void getColumn(int column, float v[]) {
+ if( column == 0 ) {
+ v[0] = m00;
+ v[1] = m10;
+ v[2] = m20;
+ } else if(column == 1) {
+ v[0] = m01;
+ v[1] = m11;
+ v[2] = m21;
+ }else if(column == 2) {
+ v[0] = m02;
+ v[1] = m12;
+ v[2] = m22;
+ }else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f3"));
+ }
+ }
+
+ /**
+ * Retrieves the value at the specified row and column of this
+ * matrix.
+ * @param row the row number to be retrieved (zero indexed)
+ * @param column the column number to be retrieved (zero indexed)
+ * @return the value at the indexed element.
+ */
+ public final float getElement(int row, int column)
+ {
+ switch (row)
+ {
+ case 0:
+ switch(column)
+ {
+ case 0:
+ return(this.m00);
+ case 1:
+ return(this.m01);
+ case 2:
+ return(this.m02);
+ default:
+ break;
+ }
+ break;
+ case 1:
+ switch(column)
+ {
+ case 0:
+ return(this.m10);
+ case 1:
+ return(this.m11);
+ case 2:
+ return(this.m12);
+ default:
+ break;
+ }
+ break;
+
+ case 2:
+ switch(column)
+ {
+ case 0:
+ return(this.m20);
+ case 1:
+ return(this.m21);
+ case 2:
+ return(this.m22);
+ default:
+ break;
+ }
+ break;
+
+ default:
+ break;
+ }
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f5"));
+ }
+
+ /**
+ * Sets the specified row of this matrix3f to the three values provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param x the first column element
+ * @param y the second column element
+ * @param z the third column element
+ */
+ public final void setRow(int row, float x, float y, float z)
+ {
+ switch (row) {
+ case 0:
+ this.m00 = x;
+ this.m01 = y;
+ this.m02 = z;
+ break;
+
+ case 1:
+ this.m10 = x;
+ this.m11 = y;
+ this.m12 = z;
+ break;
+
+ case 2:
+ this.m20 = x;
+ this.m21 = y;
+ this.m22 = z;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f6"));
+ }
+ }
+
+ /**
+ * Sets the specified row of this matrix3f to the Vector provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param v the replacement row
+ */
+ public final void setRow(int row, Vector3f v)
+ {
+ switch (row) {
+ case 0:
+ this.m00 = v.x;
+ this.m01 = v.y;
+ this.m02 = v.z;
+ break;
+
+ case 1:
+ this.m10 = v.x;
+ this.m11 = v.y;
+ this.m12 = v.z;
+ break;
+
+ case 2:
+ this.m20 = v.x;
+ this.m21 = v.y;
+ this.m22 = v.z;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f6"));
+ }
+ }
+
+ /**
+ * Sets the specified row of this matrix3f to the three values provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param v the replacement row
+ */
+ public final void setRow(int row, float v[])
+ {
+ switch (row) {
+ case 0:
+ this.m00 = v[0];
+ this.m01 = v[1];
+ this.m02 = v[2];
+ break;
+
+ case 1:
+ this.m10 = v[0];
+ this.m11 = v[1];
+ this.m12 = v[2];
+ break;
+
+ case 2:
+ this.m20 = v[0];
+ this.m21 = v[1];
+ this.m22 = v[2];
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f6"));
+ }
+ }
+
+ /**
+ * Sets the specified column of this matrix3f to the three values provided.
+ * @param column the column number to be modified (zero indexed)
+ * @param x the first row element
+ * @param y the second row element
+ * @param z the third row element
+ */
+ public final void setColumn(int column, float x, float y, float z)
+ {
+ switch (column) {
+ case 0:
+ this.m00 = x;
+ this.m10 = y;
+ this.m20 = z;
+ break;
+
+ case 1:
+ this.m01 = x;
+ this.m11 = y;
+ this.m21 = z;
+ break;
+
+ case 2:
+ this.m02 = x;
+ this.m12 = y;
+ this.m22 = z;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f9"));
+ }
+ }
+
+ /**
+ * Sets the specified column of this matrix3f to the vector provided.
+ * @param column the column number to be modified (zero indexed)
+ * @param v the replacement column
+ */
+ public final void setColumn(int column, Vector3f v)
+ {
+ switch (column) {
+ case 0:
+ this.m00 = v.x;
+ this.m10 = v.y;
+ this.m20 = v.z;
+ break;
+
+ case 1:
+ this.m01 = v.x;
+ this.m11 = v.y;
+ this.m21 = v.z;
+ break;
+
+ case 2:
+ this.m02 = v.x;
+ this.m12 = v.y;
+ this.m22 = v.z;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f9"));
+ }
+ }
+
+ /**
+ * Sets the specified column of this matrix3f to the three values provided.
+ * @param column the column number to be modified (zero indexed)
+ * @param v the replacement column
+ */
+ public final void setColumn(int column, float v[])
+ {
+ switch (column) {
+ case 0:
+ this.m00 = v[0];
+ this.m10 = v[1];
+ this.m20 = v[2];
+ break;
+
+ case 1:
+ this.m01 = v[0];
+ this.m11 = v[1];
+ this.m21 = v[2];
+ break;
+
+ case 2:
+ this.m02 = v[0];
+ this.m12 = v[1];
+ this.m22 = v[2];
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f9"));
+ }
+ }
+
+ /**
+ * Performs an SVD normalization of this matrix to calculate
+ * and return the uniform scale factor. If the matrix has non-uniform
+ * scale factors, the largest of the x, y, and z scale factors will
+ * be returned. This matrix is not modified.
+ * @return the scale factor of this matrix
+ */
+ public final float getScale()
+ {
+
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+ getScaleRotate(tmp_scale, tmp_rot);
+
+ return( (float)Matrix3d.max3(tmp_scale ));
+
+ }
+
+ /**
+ * Adds a scalar to each component of this matrix.
+ * @param scalar the scalar adder
+ */
+ public final void add(float scalar)
+ {
+ m00 += scalar;
+ m01 += scalar;
+ m02 += scalar;
+ m10 += scalar;
+ m11 += scalar;
+ m12 += scalar;
+ m20 += scalar;
+ m21 += scalar;
+ m22 += scalar;
+ }
+
+ /**
+ * Adds a scalar to each component of the matrix m1 and places
+ * the result into this. Matrix m1 is not modified.
+ * @param scalar the scalar adder.
+ * @param m1 the original matrix values
+ */
+ public final void add(float scalar, Matrix3f m1)
+ {
+ this.m00 = m1.m00 + scalar;
+ this.m01 = m1.m01 + scalar;
+ this.m02 = m1.m02 + scalar;
+ this.m10 = m1.m10 + scalar;
+ this.m11 = m1.m11 + scalar;
+ this.m12 = m1.m12 + scalar;
+ this.m20 = m1.m20 + scalar;
+ this.m21 = m1.m21 + scalar;
+ this.m22 = m1.m22 + scalar;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix sum of matrices m1 and m2.
+ * @param m1 the first matrix
+ * @param m2 the second matrix
+ */
+ public final void add(Matrix3f m1, Matrix3f m2)
+ {
+ this.m00 = m1.m00 + m2.m00;
+ this.m01 = m1.m01 + m2.m01;
+ this.m02 = m1.m02 + m2.m02;
+
+ this.m10 = m1.m10 + m2.m10;
+ this.m11 = m1.m11 + m2.m11;
+ this.m12 = m1.m12 + m2.m12;
+
+ this.m20 = m1.m20 + m2.m20;
+ this.m21 = m1.m21 + m2.m21;
+ this.m22 = m1.m22 + m2.m22;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix sum of itself and
+ * matrix m1.
+ * @param m1 the other matrix
+ */
+ public final void add(Matrix3f m1)
+ {
+ this.m00 += m1.m00;
+ this.m01 += m1.m01;
+ this.m02 += m1.m02;
+
+ this.m10 += m1.m10;
+ this.m11 += m1.m11;
+ this.m12 += m1.m12;
+
+ this.m20 += m1.m20;
+ this.m21 += m1.m21;
+ this.m22 += m1.m22;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix difference
+ * of matrices m1 and m2.
+ * @param m1 the first matrix
+ * @param m2 the second matrix
+ */
+ public final void sub(Matrix3f m1, Matrix3f m2)
+ {
+ this.m00 = m1.m00 - m2.m00;
+ this.m01 = m1.m01 - m2.m01;
+ this.m02 = m1.m02 - m2.m02;
+
+ this.m10 = m1.m10 - m2.m10;
+ this.m11 = m1.m11 - m2.m11;
+ this.m12 = m1.m12 - m2.m12;
+
+ this.m20 = m1.m20 - m2.m20;
+ this.m21 = m1.m21 - m2.m21;
+ this.m22 = m1.m22 - m2.m22;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix difference
+ * of itself and matrix m1 (this = this - m1).
+ * @param m1 the other matrix
+ */
+ public final void sub(Matrix3f m1)
+ {
+ this.m00 -= m1.m00;
+ this.m01 -= m1.m01;
+ this.m02 -= m1.m02;
+
+ this.m10 -= m1.m10;
+ this.m11 -= m1.m11;
+ this.m12 -= m1.m12;
+
+ this.m20 -= m1.m20;
+ this.m21 -= m1.m21;
+ this.m22 -= m1.m22;
+ }
+
+ /**
+ * Sets the value of this matrix to its transpose.
+ */
+ public final void transpose()
+ {
+ float temp;
+
+ temp = this.m10;
+ this.m10 = this.m01;
+ this.m01 = temp;
+
+ temp = this.m20;
+ this.m20 = this.m02;
+ this.m02 = temp;
+
+ temp = this.m21;
+ this.m21 = this.m12;
+ this.m12 = temp;
+ }
+
+ /**
+ * Sets the value of this matrix to the transpose of the argument matrix.
+ * @param m1 the matrix to be transposed
+ */
+ public final void transpose(Matrix3f m1)
+ {
+ if (this != m1) {
+ this.m00 = m1.m00;
+ this.m01 = m1.m10;
+ this.m02 = m1.m20;
+
+ this.m10 = m1.m01;
+ this.m11 = m1.m11;
+ this.m12 = m1.m21;
+
+ this.m20 = m1.m02;
+ this.m21 = m1.m12;
+ this.m22 = m1.m22;
+ } else
+ this.transpose();
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * (single precision) quaternion argument.
+ * @param q1 the quaternion to be converted
+ */
+ public final void set(Quat4f q1)
+ {
+ this.m00 = 1.0f - 2.0f*q1.y*q1.y - 2.0f*q1.z*q1.z;
+ this.m10 = 2.0f*(q1.x*q1.y + q1.w*q1.z);
+ this.m20 = 2.0f*(q1.x*q1.z - q1.w*q1.y);
+
+ this.m01 = 2.0f*(q1.x*q1.y - q1.w*q1.z);
+ this.m11 = 1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.z*q1.z;
+ this.m21 = 2.0f*(q1.y*q1.z + q1.w*q1.x);
+
+ this.m02 = 2.0f*(q1.x*q1.z + q1.w*q1.y);
+ this.m12 = 2.0f*(q1.y*q1.z - q1.w*q1.x);
+ this.m22 = 1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.y*q1.y;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * (single precision) axis and angle argument.
+ * @param a1 the axis and angle to be converted
+ */
+ public final void set(AxisAngle4f a1)
+ {
+ float mag = (float)Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z);
+ if( mag < EPS ) {
+ m00 = 1.0f;
+ m01 = 0.0f;
+ m02 = 0.0f;
+
+ m10 = 0.0f;
+ m11 = 1.0f;
+ m12 = 0.0f;
+
+ m20 = 0.0f;
+ m21 = 0.0f;
+ m22 = 1.0f;
+ } else {
+ mag = 1.0f/mag;
+ float ax = a1.x*mag;
+ float ay = a1.y*mag;
+ float az = a1.z*mag;
+
+ float sinTheta = (float)Math.sin((float)a1.angle);
+ float cosTheta = (float)Math.cos((float)a1.angle);
+ float t = (float)1.0 - cosTheta;
+
+ float xz = ax * az;
+ float xy = ax * ay;
+ float yz = ay * az;
+
+ m00 = t * ax * ax + cosTheta;
+ m01 = t * xy - sinTheta * az;
+ m02 = t * xz + sinTheta * ay;
+
+ m10 = t * xy + sinTheta * az;
+ m11 = t * ay * ay + cosTheta;
+ m12 = t * yz - sinTheta * ax;
+
+ m20 = t * xz - sinTheta * ay;
+ m21 = t * yz + sinTheta * ax;
+ m22 = t * az * az + cosTheta;
+ }
+
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * (double precision) axis and angle argument.
+ * @param a1 the axis and angle to be converted
+ */
+ public final void set(AxisAngle4d a1)
+ {
+ double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z);
+ if( mag < EPS ) {
+ m00 = 1.0f;
+ m01 = 0.0f;
+ m02 = 0.0f;
+
+ m10 = 0.0f;
+ m11 = 1.0f;
+ m12 = 0.0f;
+
+ m20 = 0.0f;
+ m21 = 0.0f;
+ m22 = 1.0f;
+ } else {
+ mag = 1.0/mag;
+ double ax = a1.x*mag;
+ double ay = a1.y*mag;
+ double az = a1.z*mag;
+
+ double sinTheta = Math.sin(a1.angle);
+ double cosTheta = Math.cos(a1.angle);
+ double t = 1.0 - cosTheta;
+
+ double xz = ax * az;
+ double xy = ax * ay;
+ double yz = ay * az;
+
+ m00 = (float)(t * ax * ax + cosTheta);
+ m01 = (float)(t * xy - sinTheta * az);
+ m02 = (float)(t * xz + sinTheta * ay);
+
+ m10 = (float)(t * xy + sinTheta * az);
+ m11 = (float)(t * ay * ay + cosTheta);
+ m12 = (float)(t * yz - sinTheta * ax);
+
+ m20 = (float)(t * xz - sinTheta * ay);
+ m21 = (float)(t * yz + sinTheta * ax);
+ m22 = (float)(t * az * az + cosTheta);
+ }
+
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * (single precision) quaternion argument.
+ * @param q1 the quaternion to be converted
+ */
+ public final void set(Quat4d q1)
+ {
+ this.m00 = (float) (1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z);
+ this.m10 = (float) (2.0*(q1.x*q1.y + q1.w*q1.z));
+ this.m20 = (float) (2.0*(q1.x*q1.z - q1.w*q1.y));
+
+ this.m01 = (float) (2.0*(q1.x*q1.y - q1.w*q1.z));
+ this.m11 = (float) (1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z);
+ this.m21 = (float) (2.0*(q1.y*q1.z + q1.w*q1.x));
+
+ this.m02 = (float) (2.0*(q1.x*q1.z + q1.w*q1.y));
+ this.m12 = (float) (2.0*(q1.y*q1.z - q1.w*q1.x));
+ this.m22 = (float) (1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y);
+ }
+
+ /**
+ * Sets the values in this Matrix3f equal to the row-major
+ * array parameter (ie, the first three elements of the
+ * array will be copied into the first row of this matrix, etc.).
+ * @param m the single precision array of length 9
+ */
+ public final void set(float[] m)
+ {
+ m00 = m[0];
+ m01 = m[1];
+ m02 = m[2];
+
+ m10 = m[3];
+ m11 = m[4];
+ m12 = m[5];
+
+ m20 = m[6];
+ m21 = m[7];
+ m22 = m[8];
+
+
+ }
+
+ /**
+ * Sets the value of this matrix to the value of the Matrix3f
+ * argument.
+ * @param m1 the source matrix3f
+ */
+ public final void set(Matrix3f m1) {
+
+ this.m00 = m1.m00;
+ this.m01 = m1.m01;
+ this.m02 = m1.m02;
+
+ this.m10 = m1.m10;
+ this.m11 = m1.m11;
+ this.m12 = m1.m12;
+
+ this.m20 = m1.m20;
+ this.m21 = m1.m21;
+ this.m22 = m1.m22;
+
+ }
+
+
+ /**
+ * Sets the value of this matrix to the float value of the Matrix3d
+ * argument.
+ * @param m1 the source matrix3d
+ */
+ public final void set(Matrix3d m1) {
+
+ this.m00 = (float)m1.m00;
+ this.m01 = (float)m1.m01;
+ this.m02 = (float)m1.m02;
+
+ this.m10 = (float)m1.m10;
+ this.m11 = (float)m1.m11;
+ this.m12 = (float)m1.m12;
+
+ this.m20 = (float)m1.m20;
+ this.m21 = (float)m1.m21;
+ this.m22 = (float)m1.m22;
+
+ }
+
+
+ /**
+ * Sets the value of this matrix to the matrix inverse
+ * of the passed matrix m1.
+ * @param m1 the matrix to be inverted
+ */
+ public final void invert(Matrix3f m1)
+ {
+ invertGeneral( m1);
+ }
+
+ /**
+ * Inverts this matrix in place.
+ */
+ public final void invert()
+ {
+ invertGeneral( this );
+ }
+
+ /**
+ * General invert routine. Inverts m1 and places the result in "this".
+ * Note that this routine handles both the "this" version and the
+ * non-"this" version.
+ *
+ * Also note that since this routine is slow anyway, we won't worry
+ * about allocating a little bit of garbage.
+ */
+ private final void invertGeneral(Matrix3f m1) {
+ double temp[] = new double[9];
+ double result[] = new double[9];
+ int row_perm[] = new int[3];
+ int i, r, c;
+
+ // Use LU decomposition and backsubstitution code specifically
+ // for floating-point 3x3 matrices.
+
+ // Copy source matrix to t1tmp
+ temp[0] = (double)m1.m00;
+ temp[1] = (double)m1.m01;
+ temp[2] = (double)m1.m02;
+
+ temp[3] = (double)m1.m10;
+ temp[4] = (double)m1.m11;
+ temp[5] = (double)m1.m12;
+
+ temp[6] = (double)m1.m20;
+ temp[7] = (double)m1.m21;
+ temp[8] = (double)m1.m22;
+
+
+ // Calculate LU decomposition: Is the matrix singular?
+ if (!luDecomposition(temp, row_perm)) {
+ // Matrix has no inverse
+ throw new SingularMatrixException(VecMathI18N.getString("Matrix3f12"));
+ }
+
+ // Perform back substitution on the identity matrix
+ for(i=0;i<9;i++) result[i] = 0.0;
+ result[0] = 1.0; result[4] = 1.0; result[8] = 1.0;
+ luBacksubstitution(temp, row_perm, result);
+
+ this.m00 = (float)result[0];
+ this.m01 = (float)result[1];
+ this.m02 = (float)result[2];
+
+ this.m10 = (float)result[3];
+ this.m11 = (float)result[4];
+ this.m12 = (float)result[5];
+
+ this.m20 = (float)result[6];
+ this.m21 = (float)result[7];
+ this.m22 = (float)result[8];
+
+ }
+
+ /**
+ * Given a 3x3 array "matrix0", this function replaces it with the
+ * LU decomposition of a row-wise permutation of itself. The input
+ * parameters are "matrix0" and "dimen". The array "matrix0" is also
+ * an output parameter. The vector "row_perm[3]" is an output
+ * parameter that contains the row permutations resulting from partial
+ * pivoting. The output parameter "even_row_xchg" is 1 when the
+ * number of row exchanges is even, or -1 otherwise. Assumes data
+ * type is always double.
+ *
+ * This function is similar to luDecomposition, except that it
+ * is tuned specifically for 3x3 matrices.
+ *
+ * @return true if the matrix is nonsingular, or false otherwise.
+ */
+ //
+ // Reference: Press, Flannery, Teukolsky, Vetterling,
+ // _Numerical_Recipes_in_C_, Cambridge University Press,
+ // 1988, pp 40-45.
+ //
+ static boolean luDecomposition(double[] matrix0,
+ int[] row_perm) {
+
+ double row_scale[] = new double[3];
+
+ // Determine implicit scaling information by looping over rows
+ {
+ int i, j;
+ int ptr, rs;
+ double big, temp;
+
+ ptr = 0;
+ rs = 0;
+
+ // For each row ...
+ i = 3;
+ while (i-- != 0) {
+ big = 0.0;
+
+ // For each column, find the largest element in the row
+ j = 3;
+ while (j-- != 0) {
+ temp = matrix0[ptr++];
+ temp = Math.abs(temp);
+ if (temp > big) {
+ big = temp;
+ }
+ }
+
+ // Is the matrix singular?
+ if (big == 0.0) {
+ return false;
+ }
+ row_scale[rs++] = 1.0 / big;
+ }
+ }
+
+ {
+ int j;
+ int mtx;
+
+ mtx = 0;
+
+ // For all columns, execute Crout's method
+ for (j = 0; j < 3; j++) {
+ int i, imax, k;
+ int target, p1, p2;
+ double sum, big, temp;
+
+ // Determine elements of upper diagonal matrix U
+ for (i = 0; i < j; i++) {
+ target = mtx + (3*i) + j;
+ sum = matrix0[target];
+ k = i;
+ p1 = mtx + (3*i);
+ p2 = mtx + j;
+ while (k-- != 0) {
+ sum -= matrix0[p1] * matrix0[p2];
+ p1++;
+ p2 += 3;
+ }
+ matrix0[target] = sum;
+ }
+
+ // Search for largest pivot element and calculate
+ // intermediate elements of lower diagonal matrix L.
+ big = 0.0;
+ imax = -1;
+ for (i = j; i < 3; i++) {
+ target = mtx + (3*i) + j;
+ sum = matrix0[target];
+ k = j;
+ p1 = mtx + (3*i);
+ p2 = mtx + j;
+ while (k-- != 0) {
+ sum -= matrix0[p1] * matrix0[p2];
+ p1++;
+ p2 += 3;
+ }
+ matrix0[target] = sum;
+
+ // Is this the best pivot so far?
+ if ((temp = row_scale[i] * Math.abs(sum)) >= big) {
+ big = temp;
+ imax = i;
+ }
+ }
+
+ if (imax < 0) {
+ throw new RuntimeException(VecMathI18N.getString("Matrix3f13"));
+ }
+
+ // Is a row exchange necessary?
+ if (j != imax) {
+ // Yes: exchange rows
+ k = 3;
+ p1 = mtx + (3*imax);
+ p2 = mtx + (3*j);
+ while (k-- != 0) {
+ temp = matrix0[p1];
+ matrix0[p1++] = matrix0[p2];
+ matrix0[p2++] = temp;
+ }
+
+ // Record change in scale factor
+ row_scale[imax] = row_scale[j];
+ }
+
+ // Record row permutation
+ row_perm[j] = imax;
+
+ // Is the matrix singular
+ if (matrix0[(mtx + (3*j) + j)] == 0.0) {
+ return false;
+ }
+
+ // Divide elements of lower diagonal matrix L by pivot
+ if (j != (3-1)) {
+ temp = 1.0 / (matrix0[(mtx + (3*j) + j)]);
+ target = mtx + (3*(j+1)) + j;
+ i = 2 - j;
+ while (i-- != 0) {
+ matrix0[target] *= temp;
+ target += 3;
+ }
+ }
+ }
+ }
+
+ return true;
+ }
+
+ /**
+ * Solves a set of linear equations. The input parameters "matrix1",
+ * and "row_perm" come from luDecompostionD3x3 and do not change
+ * here. The parameter "matrix2" is a set of column vectors assembled
+ * into a 3x3 matrix of floating-point values. The procedure takes each
+ * column of "matrix2" in turn and treats it as the right-hand side of the
+ * matrix equation Ax = LUx = b. The solution vector replaces the
+ * original column of the matrix.
+ *
+ * If "matrix2" is the identity matrix, the procedure replaces its contents
+ * with the inverse of the matrix from which "matrix1" was originally
+ * derived.
+ */
+ //
+ // Reference: Press, Flannery, Teukolsky, Vetterling,
+ // _Numerical_Recipes_in_C_, Cambridge University Press,
+ // 1988, pp 44-45.
+ //
+ static void luBacksubstitution(double[] matrix1,
+ int[] row_perm,
+ double[] matrix2) {
+
+ int i, ii, ip, j, k;
+ int rp;
+ int cv, rv;
+
+ // rp = row_perm;
+ rp = 0;
+
+ // For each column vector of matrix2 ...
+ for (k = 0; k < 3; k++) {
+ // cv = &(matrix2[0][k]);
+ cv = k;
+ ii = -1;
+
+ // Forward substitution
+ for (i = 0; i < 3; i++) {
+ double sum;
+
+ ip = row_perm[rp+i];
+ sum = matrix2[cv+3*ip];
+ matrix2[cv+3*ip] = matrix2[cv+3*i];
+ if (ii >= 0) {
+ // rv = &(matrix1[i][0]);
+ rv = i*3;
+ for (j = ii; j <= i-1; j++) {
+ sum -= matrix1[rv+j] * matrix2[cv+3*j];
+ }
+ }
+ else if (sum != 0.0) {
+ ii = i;
+ }
+ matrix2[cv+3*i] = sum;
+ }
+
+ // Backsubstitution
+ // rv = &(matrix1[3][0]);
+ rv = 2*3;
+ matrix2[cv+3*2] /= matrix1[rv+2];
+
+ rv -= 3;
+ matrix2[cv+3*1] = (matrix2[cv+3*1] -
+ matrix1[rv+2] * matrix2[cv+3*2]) / matrix1[rv+1];
+
+ rv -= 3;
+ matrix2[cv+4*0] = (matrix2[cv+3*0] -
+ matrix1[rv+1] * matrix2[cv+3*1] -
+ matrix1[rv+2] * matrix2[cv+3*2]) / matrix1[rv+0];
+
+ }
+ }
+ /**
+ * Computes the determinant of this matrix.
+ * @return the determinant of this matrix
+ */
+ public final float determinant()
+ {
+ float total;
+ total = this.m00*(this.m11*this.m22 - this.m12*this.m21)
+ + this.m01*(this.m12*this.m20 - this.m10*this.m22)
+ + this.m02*(this.m10*this.m21 - this.m11*this.m20);
+ return total;
+ }
+
+ /**
+ * Sets the value of this matrix to a scale matrix with
+ * the passed scale amount.
+ * @param scale the scale factor for the matrix
+ */
+ public final void set(float scale)
+ {
+ this.m00 = scale;
+ this.m01 = (float) 0.0;
+ this.m02 = (float) 0.0;
+
+ this.m10 = (float) 0.0;
+ this.m11 = scale;
+ this.m12 = (float) 0.0;
+
+ this.m20 = (float) 0.0;
+ this.m21 = (float) 0.0;
+ this.m22 = scale;
+ }
+
+ /**
+ * Sets the value of this matrix to a counter clockwise rotation
+ * about the x axis.
+ * @param angle the angle to rotate about the X axis in radians
+ */
+ public final void rotX(float angle)
+ {
+ float sinAngle, cosAngle;
+
+ sinAngle = (float) Math.sin((double) angle);
+ cosAngle = (float) Math.cos((double) angle);
+
+ this.m00 = (float) 1.0;
+ this.m01 = (float) 0.0;
+ this.m02 = (float) 0.0;
+
+ this.m10 = (float) 0.0;
+ this.m11 = cosAngle;
+ this.m12 = -sinAngle;
+
+ this.m20 = (float) 0.0;
+ this.m21 = sinAngle;
+ this.m22 = cosAngle;
+ }
+
+ /**
+ * Sets the value of this matrix to a counter clockwise rotation
+ * about the y axis.
+ * @param angle the angle to rotate about the Y axis in radians
+ */
+ public final void rotY(float angle)
+ {
+ float sinAngle, cosAngle;
+
+ sinAngle = (float) Math.sin((double) angle);
+ cosAngle = (float) Math.cos((double) angle);
+
+ this.m00 = cosAngle;
+ this.m01 = (float) 0.0;
+ this.m02 = sinAngle;
+
+ this.m10 = (float) 0.0;
+ this.m11 = (float) 1.0;
+ this.m12 = (float) 0.0;
+
+ this.m20 = -sinAngle;
+ this.m21 = (float) 0.0;
+ this.m22 = cosAngle;
+ }
+
+ /**
+ * Sets the value of this matrix to a counter clockwise rotation
+ * about the z axis.
+ * @param angle the angle to rotate about the Z axis in radians
+ */
+ public final void rotZ(float angle)
+ {
+ float sinAngle, cosAngle;
+
+ sinAngle = (float) Math.sin((double) angle);
+ cosAngle = (float) Math.cos((double) angle);
+
+ this.m00 = cosAngle;
+ this.m01 = -sinAngle;
+ this.m02 = (float) 0.0;
+
+ this.m10 = sinAngle;
+ this.m11 = cosAngle;
+ this.m12 = (float) 0.0;
+
+ this.m20 = (float) 0.0;
+ this.m21 = (float) 0.0;
+ this.m22 = (float) 1.0;
+ }
+
+ /**
+ * Multiplies each element of this matrix by a scalar.
+ * @param scalar the scalar multiplier
+ */
+ public final void mul(float scalar)
+ {
+ m00 *= scalar;
+ m01 *= scalar;
+ m02 *= scalar;
+
+ m10 *= scalar;
+ m11 *= scalar;
+ m12 *= scalar;
+
+ m20 *= scalar;
+ m21 *= scalar;
+ m22 *= scalar;
+ }
+
+ /**
+ * Multiplies each element of matrix m1 by a scalar and places
+ * the result into this. Matrix m1 is not modified.
+ * @param scalar the scalar multiplier
+ * @param m1 the original matrix
+ */
+ public final void mul(float scalar, Matrix3f m1)
+ {
+ this.m00 = scalar * m1.m00;
+ this.m01 = scalar * m1.m01;
+ this.m02 = scalar * m1.m02;
+
+ this.m10 = scalar * m1.m10;
+ this.m11 = scalar * m1.m11;
+ this.m12 = scalar * m1.m12;
+
+ this.m20 = scalar * m1.m20;
+ this.m21 = scalar * m1.m21;
+ this.m22 = scalar * m1.m22;
+
+ }
+
+ /**
+ * Sets the value of this matrix to the result of multiplying itself
+ * with matrix m1.
+ * @param m1 the other matrix
+ */
+ public final void mul(Matrix3f m1)
+ {
+ float m00, m01, m02,
+ m10, m11, m12,
+ m20, m21, m22;
+
+ m00 = this.m00*m1.m00 + this.m01*m1.m10 + this.m02*m1.m20;
+ m01 = this.m00*m1.m01 + this.m01*m1.m11 + this.m02*m1.m21;
+ m02 = this.m00*m1.m02 + this.m01*m1.m12 + this.m02*m1.m22;
+
+ m10 = this.m10*m1.m00 + this.m11*m1.m10 + this.m12*m1.m20;
+ m11 = this.m10*m1.m01 + this.m11*m1.m11 + this.m12*m1.m21;
+ m12 = this.m10*m1.m02 + this.m11*m1.m12 + this.m12*m1.m22;
+
+ m20 = this.m20*m1.m00 + this.m21*m1.m10 + this.m22*m1.m20;
+ m21 = this.m20*m1.m01 + this.m21*m1.m11 + this.m22*m1.m21;
+ m22 = this.m20*m1.m02 + this.m21*m1.m12 + this.m22*m1.m22;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22;
+ }
+
+ /**
+ * Sets the value of this matrix to the result of multiplying
+ * the two argument matrices together.
+ * @param m1 the first matrix
+ * @param m2 the second matrix
+ */
+ public final void mul(Matrix3f m1, Matrix3f m2)
+ {
+ if (this != m1 && this != m2) {
+ this.m00 = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20;
+ this.m01 = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21;
+ this.m02 = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22;
+
+ this.m10 = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20;
+ this.m11 = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21;
+ this.m12 = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22;
+
+ this.m20 = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20;
+ this.m21 = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21;
+ this.m22 = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22;
+ } else {
+ float m00, m01, m02,
+ m10, m11, m12,
+ m20, m21, m22;
+
+ m00 = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20;
+ m01 = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21;
+ m02 = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22;
+
+ m10 = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20;
+ m11 = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21;
+ m12 = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22;
+
+ m20 = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20;
+ m21 = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21;
+ m22 = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22;
+ }
+ }
+
+ /**
+ * Multiplies this matrix by matrix m1, does an SVD normalization
+ * of the result, and places the result back into this matrix.
+ * this = SVDnorm(this*m1).
+ * @param m1 the matrix on the right hand side of the multiplication
+ */
+ public final void mulNormalize(Matrix3f m1){
+
+ double[] tmp = new double[9]; // scratch matrix
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ tmp[0] = this.m00*m1.m00 + this.m01*m1.m10 + this.m02*m1.m20;
+ tmp[1] = this.m00*m1.m01 + this.m01*m1.m11 + this.m02*m1.m21;
+ tmp[2] = this.m00*m1.m02 + this.m01*m1.m12 + this.m02*m1.m22;
+
+ tmp[3] = this.m10*m1.m00 + this.m11*m1.m10 + this.m12*m1.m20;
+ tmp[4] = this.m10*m1.m01 + this.m11*m1.m11 + this.m12*m1.m21;
+ tmp[5] = this.m10*m1.m02 + this.m11*m1.m12 + this.m12*m1.m22;
+
+ tmp[6] = this.m20*m1.m00 + this.m21*m1.m10 + this.m22*m1.m20;
+ tmp[7] = this.m20*m1.m01 + this.m21*m1.m11 + this.m22*m1.m21;
+ tmp[8] = this.m20*m1.m02 + this.m21*m1.m12 + this.m22*m1.m22;
+
+ Matrix3d.compute_svd( tmp, tmp_scale, tmp_rot);
+
+ this.m00 = (float)(tmp_rot[0]);
+ this.m01 = (float)(tmp_rot[1]);
+ this.m02 = (float)(tmp_rot[2]);
+
+ this.m10 = (float)(tmp_rot[3]);
+ this.m11 = (float)(tmp_rot[4]);
+ this.m12 = (float)(tmp_rot[5]);
+
+ this.m20 = (float)(tmp_rot[6]);
+ this.m21 = (float)(tmp_rot[7]);
+ this.m22 = (float)(tmp_rot[8]);
+
+ }
+
+ /**
+ * Multiplies matrix m1 by matrix m2, does an SVD normalization
+ * of the result, and places the result into this matrix.
+ * this = SVDnorm(m1*m2).
+ * @param m1 the matrix on the left hand side of the multiplication
+ * @param m2 the matrix on the right hand side of the multiplication
+ */
+ public final void mulNormalize(Matrix3f m1, Matrix3f m2){
+
+ double[] tmp = new double[9]; // scratch matrix
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+
+ tmp[0] = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20;
+ tmp[1] = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21;
+ tmp[2] = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22;
+
+ tmp[3] = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20;
+ tmp[4] = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21;
+ tmp[5] = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22;
+
+ tmp[6] = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20;
+ tmp[7] = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21;
+ tmp[8] = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22;
+
+ Matrix3d.compute_svd( tmp, tmp_scale, tmp_rot);
+
+ this.m00 = (float)(tmp_rot[0]);
+ this.m01 = (float)(tmp_rot[1]);
+ this.m02 = (float)(tmp_rot[2]);
+
+ this.m10 = (float)(tmp_rot[3]);
+ this.m11 = (float)(tmp_rot[4]);
+ this.m12 = (float)(tmp_rot[5]);
+
+ this.m20 = (float)(tmp_rot[6]);
+ this.m21 = (float)(tmp_rot[7]);
+ this.m22 = (float)(tmp_rot[8]);
+ }
+
+ /**
+ * Multiplies the transpose of matrix m1 times the transpose of matrix
+ * m2, and places the result into this.
+ * @param m1 the matrix on the left hand side of the multiplication
+ * @param m2 the matrix on the right hand side of the multiplication
+ */
+ public final void mulTransposeBoth(Matrix3f m1, Matrix3f m2)
+ {
+ if (this != m1 && this != m2) {
+ this.m00 = m1.m00*m2.m00 + m1.m10*m2.m01 + m1.m20*m2.m02;
+ this.m01 = m1.m00*m2.m10 + m1.m10*m2.m11 + m1.m20*m2.m12;
+ this.m02 = m1.m00*m2.m20 + m1.m10*m2.m21 + m1.m20*m2.m22;
+
+ this.m10 = m1.m01*m2.m00 + m1.m11*m2.m01 + m1.m21*m2.m02;
+ this.m11 = m1.m01*m2.m10 + m1.m11*m2.m11 + m1.m21*m2.m12;
+ this.m12 = m1.m01*m2.m20 + m1.m11*m2.m21 + m1.m21*m2.m22;
+
+ this.m20 = m1.m02*m2.m00 + m1.m12*m2.m01 + m1.m22*m2.m02;
+ this.m21 = m1.m02*m2.m10 + m1.m12*m2.m11 + m1.m22*m2.m12;
+ this.m22 = m1.m02*m2.m20 + m1.m12*m2.m21 + m1.m22*m2.m22;
+ } else {
+ float m00, m01, m02,
+ m10, m11, m12,
+ m20, m21, m22; // vars for temp result matrix
+
+ m00 = m1.m00*m2.m00 + m1.m10*m2.m01 + m1.m20*m2.m02;
+ m01 = m1.m00*m2.m10 + m1.m10*m2.m11 + m1.m20*m2.m12;
+ m02 = m1.m00*m2.m20 + m1.m10*m2.m21 + m1.m20*m2.m22;
+
+ m10 = m1.m01*m2.m00 + m1.m11*m2.m01 + m1.m21*m2.m02;
+ m11 = m1.m01*m2.m10 + m1.m11*m2.m11 + m1.m21*m2.m12;
+ m12 = m1.m01*m2.m20 + m1.m11*m2.m21 + m1.m21*m2.m22;
+
+ m20 = m1.m02*m2.m00 + m1.m12*m2.m01 + m1.m22*m2.m02;
+ m21 = m1.m02*m2.m10 + m1.m12*m2.m11 + m1.m22*m2.m12;
+ m22 = m1.m02*m2.m20 + m1.m12*m2.m21 + m1.m22*m2.m22;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22;
+ }
+
+ }
+
+
+ /**
+ * Multiplies matrix m1 times the transpose of matrix m2, and
+ * places the result into this.
+ * @param m1 the matrix on the left hand side of the multiplication
+ * @param m2 the matrix on the right hand side of the multiplication
+ */
+ public final void mulTransposeRight(Matrix3f m1, Matrix3f m2)
+ {
+ if (this != m1 && this != m2) {
+ this.m00 = m1.m00*m2.m00 + m1.m01*m2.m01 + m1.m02*m2.m02;
+ this.m01 = m1.m00*m2.m10 + m1.m01*m2.m11 + m1.m02*m2.m12;
+ this.m02 = m1.m00*m2.m20 + m1.m01*m2.m21 + m1.m02*m2.m22;
+
+ this.m10 = m1.m10*m2.m00 + m1.m11*m2.m01 + m1.m12*m2.m02;
+ this.m11 = m1.m10*m2.m10 + m1.m11*m2.m11 + m1.m12*m2.m12;
+ this.m12 = m1.m10*m2.m20 + m1.m11*m2.m21 + m1.m12*m2.m22;
+
+ this.m20 = m1.m20*m2.m00 + m1.m21*m2.m01 + m1.m22*m2.m02;
+ this.m21 = m1.m20*m2.m10 + m1.m21*m2.m11 + m1.m22*m2.m12;
+ this.m22 = m1.m20*m2.m20 + m1.m21*m2.m21 + m1.m22*m2.m22;
+ } else {
+ float m00, m01, m02,
+ m10, m11, m12,
+ m20, m21, m22; // vars for temp result matrix
+
+ m00 = m1.m00*m2.m00 + m1.m01*m2.m01 + m1.m02*m2.m02;
+ m01 = m1.m00*m2.m10 + m1.m01*m2.m11 + m1.m02*m2.m12;
+ m02 = m1.m00*m2.m20 + m1.m01*m2.m21 + m1.m02*m2.m22;
+
+ m10 = m1.m10*m2.m00 + m1.m11*m2.m01 + m1.m12*m2.m02;
+ m11 = m1.m10*m2.m10 + m1.m11*m2.m11 + m1.m12*m2.m12;
+ m12 = m1.m10*m2.m20 + m1.m11*m2.m21 + m1.m12*m2.m22;
+
+ m20 = m1.m20*m2.m00 + m1.m21*m2.m01 + m1.m22*m2.m02;
+ m21 = m1.m20*m2.m10 + m1.m21*m2.m11 + m1.m22*m2.m12;
+ m22 = m1.m20*m2.m20 + m1.m21*m2.m21 + m1.m22*m2.m22;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22;
+ }
+ }
+
+ /**
+ * Multiplies the transpose of matrix m1 times matrix m2, and
+ * places the result into this.
+ * @param m1 the matrix on the left hand side of the multiplication
+ * @param m2 the matrix on the right hand side of the multiplication
+ */
+ public final void mulTransposeLeft(Matrix3f m1, Matrix3f m2)
+ {
+ if (this != m1 && this != m2) {
+ this.m00 = m1.m00*m2.m00 + m1.m10*m2.m10 + m1.m20*m2.m20;
+ this.m01 = m1.m00*m2.m01 + m1.m10*m2.m11 + m1.m20*m2.m21;
+ this.m02 = m1.m00*m2.m02 + m1.m10*m2.m12 + m1.m20*m2.m22;
+
+ this.m10 = m1.m01*m2.m00 + m1.m11*m2.m10 + m1.m21*m2.m20;
+ this.m11 = m1.m01*m2.m01 + m1.m11*m2.m11 + m1.m21*m2.m21;
+ this.m12 = m1.m01*m2.m02 + m1.m11*m2.m12 + m1.m21*m2.m22;
+
+ this.m20 = m1.m02*m2.m00 + m1.m12*m2.m10 + m1.m22*m2.m20;
+ this.m21 = m1.m02*m2.m01 + m1.m12*m2.m11 + m1.m22*m2.m21;
+ this.m22 = m1.m02*m2.m02 + m1.m12*m2.m12 + m1.m22*m2.m22;
+ } else {
+ float m00, m01, m02,
+ m10, m11, m12,
+ m20, m21, m22; // vars for temp result matrix
+
+ m00 = m1.m00*m2.m00 + m1.m10*m2.m10 + m1.m20*m2.m20;
+ m01 = m1.m00*m2.m01 + m1.m10*m2.m11 + m1.m20*m2.m21;
+ m02 = m1.m00*m2.m02 + m1.m10*m2.m12 + m1.m20*m2.m22;
+
+ m10 = m1.m01*m2.m00 + m1.m11*m2.m10 + m1.m21*m2.m20;
+ m11 = m1.m01*m2.m01 + m1.m11*m2.m11 + m1.m21*m2.m21;
+ m12 = m1.m01*m2.m02 + m1.m11*m2.m12 + m1.m21*m2.m22;
+
+ m20 = m1.m02*m2.m00 + m1.m12*m2.m10 + m1.m22*m2.m20;
+ m21 = m1.m02*m2.m01 + m1.m12*m2.m11 + m1.m22*m2.m21;
+ m22 = m1.m02*m2.m02 + m1.m12*m2.m12 + m1.m22*m2.m22;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22;
+ }
+ }
+
+ /**
+ * Performs singular value decomposition normalization of this matrix.
+ */
+ public final void normalize(){
+
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ this.m00 = (float)tmp_rot[0];
+ this.m01 = (float)tmp_rot[1];
+ this.m02 = (float)tmp_rot[2];
+
+ this.m10 = (float)tmp_rot[3];
+ this.m11 = (float)tmp_rot[4];
+ this.m12 = (float)tmp_rot[5];
+
+ this.m20 = (float)tmp_rot[6];
+ this.m21 = (float)tmp_rot[7];
+ this.m22 = (float)tmp_rot[8];
+
+ }
+
+ /**
+ * Perform singular value decomposition normalization of matrix m1
+ * and place the normalized values into this.
+ * @param m1 the matrix values to be normalized
+ */
+ public final void normalize(Matrix3f m1){
+ double[] tmp = new double[9]; // scratch matrix
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ tmp[0] = m1.m00;
+ tmp[1] = m1.m01;
+ tmp[2] = m1.m02;
+
+ tmp[3] = m1.m10;
+ tmp[4] = m1.m11;
+ tmp[5] = m1.m12;
+
+ tmp[6] = m1.m20;
+ tmp[7] = m1.m21;
+ tmp[8] = m1.m22;
+
+ Matrix3d.compute_svd( tmp, tmp_scale, tmp_rot );
+
+ this.m00 = (float)(tmp_rot[0]);
+ this.m01 = (float)(tmp_rot[1]);
+ this.m02 = (float)(tmp_rot[2]);
+
+ this.m10 = (float)(tmp_rot[3]);
+ this.m11 = (float)(tmp_rot[4]);
+ this.m12 = (float)(tmp_rot[5]);
+
+ this.m20 = (float)(tmp_rot[6]);
+ this.m21 = (float)(tmp_rot[7]);
+ this.m22 = (float)(tmp_rot[8]);
+
+ }
+
+ /**
+ * Perform cross product normalization of this matrix.
+ */
+ public final void normalizeCP()
+ {
+ float mag = 1.0f/(float)Math.sqrt(m00*m00 + m10*m10 + m20*m20);
+ m00 = m00*mag;
+ m10 = m10*mag;
+ m20 = m20*mag;
+
+ mag = 1.0f/(float)Math.sqrt(m01*m01 + m11*m11 + m21*m21);
+ m01 = m01*mag;
+ m11 = m11*mag;
+ m21 = m21*mag;
+
+ m02 = m10*m21 - m11*m20;
+ m12 = m01*m20 - m00*m21;
+ m22 = m00*m11 - m01*m10;
+
+ }
+
+ /**
+ * Perform cross product normalization of matrix m1 and place the
+ * normalized values into this.
+ * @param m1 Provides the matrix values to be normalized
+ */
+ public final void normalizeCP(Matrix3f m1)
+ {
+ float mag = 1.0f/(float)Math.sqrt(m1.m00*m1.m00 + m1.m10*m1.m10 + m1.m20*m1.m20);
+ m00 = m1.m00*mag;
+ m10 = m1.m10*mag;
+ m20 = m1.m20*mag;
+
+ mag = 1.0f/(float)Math.sqrt(m1.m01*m1.m01 + m1.m11*m1.m11 + m1.m21*m1.m21);
+ m01 = m1.m01*mag;
+ m11 = m1.m11*mag;
+ m21 = m1.m21*mag;
+
+ m02 = m10*m21 - m11*m20;
+ m12 = m01*m20 - m00*m21;
+ m22 = m00*m11 - m01*m10;
+
+ }
+
+ /**
+ * Returns true if all of the data members of Matrix3f m1 are
+ * equal to the corresponding data members in this Matrix3f.
+ * @param m1 the matrix with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Matrix3f m1)
+ {
+ try {
+
+ return(this.m00 == m1.m00 && this.m01 == m1.m01 && this.m02 == m1.m02
+ && this.m10 == m1.m10 && this.m11 == m1.m11 && this.m12 == m1.m12
+ && this.m20 == m1.m20 && this.m21 == m1.m21 && this.m22 == m1.m22);
+ }
+ catch (NullPointerException e2) { return false; }
+
+ }
+
+ /**
+ * Returns true if the Object o1 is of type Matrix3f and all of the
+ * data members of o1 are equal to the corresponding data members in
+ * this Matrix3f.
+ * @param o1 the object with which the comparison is made
+ * @return true or false
+ */
+ @Override
+ public boolean equals(Object o1)
+ {
+ try {
+
+ Matrix3f m2 = (Matrix3f) o1;
+ return(this.m00 == m2.m00 && this.m01 == m2.m01 && this.m02 == m2.m02
+ && this.m10 == m2.m10 && this.m11 == m2.m11 && this.m12 == m2.m12
+ && this.m20 == m2.m20 && this.m21 == m2.m21 && this.m22 == m2.m22);
+ }
+ catch (ClassCastException e1) { return false; }
+ catch (NullPointerException e2) { return false; }
+ }
+
+ /**
+ * Returns true if the L-infinite distance between this matrix
+ * and matrix m1 is less than or equal to the epsilon parameter,
+ * otherwise returns false. The L-infinite
+ * distance is equal to
+ * MAX[i=0,1,2 ; j=0,1,2 ; abs(this.m(i,j) - m1.m(i,j)]
+ * @param m1 the matrix to be compared to this matrix
+ * @param epsilon the threshold value
+ */
+ public boolean epsilonEquals(Matrix3f m1, float epsilon)
+ {
+ boolean status = true;
+
+ if( Math.abs( this.m00 - m1.m00) > epsilon) status = false;
+ if( Math.abs( this.m01 - m1.m01) > epsilon) status = false;
+ if( Math.abs( this.m02 - m1.m02) > epsilon) status = false;
+
+ if( Math.abs( this.m10 - m1.m10) > epsilon) status = false;
+ if( Math.abs( this.m11 - m1.m11) > epsilon) status = false;
+ if( Math.abs( this.m12 - m1.m12) > epsilon) status = false;
+
+ if( Math.abs( this.m20 - m1.m20) > epsilon) status = false;
+ if( Math.abs( this.m21 - m1.m21) > epsilon) status = false;
+ if( Math.abs( this.m22 - m1.m22) > epsilon) status = false;
+
+ return( status );
+
+ }
+
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different Matrix3f objects with identical data values
+ * (i.e., Matrix3f.equals returns true) will return the same hash
+ * code value. Two objects with different data members may return the
+ * same hash value, although this is not likely.
+ * @return the integer hash code value
+ */
+ @Override
+ public int hashCode() {
+ long bits = 1L;
+ bits = VecMathUtil.hashFloatBits(bits, m00);
+ bits = VecMathUtil.hashFloatBits(bits, m01);
+ bits = VecMathUtil.hashFloatBits(bits, m02);
+ bits = VecMathUtil.hashFloatBits(bits, m10);
+ bits = VecMathUtil.hashFloatBits(bits, m11);
+ bits = VecMathUtil.hashFloatBits(bits, m12);
+ bits = VecMathUtil.hashFloatBits(bits, m20);
+ bits = VecMathUtil.hashFloatBits(bits, m21);
+ bits = VecMathUtil.hashFloatBits(bits, m22);
+ return VecMathUtil.hashFinish(bits);
+ }
+
+
+ /**
+ * Sets this matrix to all zeros.
+ */
+ public final void setZero()
+ {
+ m00 = 0.0f;
+ m01 = 0.0f;
+ m02 = 0.0f;
+
+ m10 = 0.0f;
+ m11 = 0.0f;
+ m12 = 0.0f;
+
+ m20 = 0.0f;
+ m21 = 0.0f;
+ m22 = 0.0f;
+
+ }
+
+ /**
+ * Negates the value of this matrix: this = -this.
+ */
+ public final void negate()
+ {
+ this.m00 = -this.m00;
+ this.m01 = -this.m01;
+ this.m02 = -this.m02;
+
+ this.m10 = -this.m10;
+ this.m11 = -this.m11;
+ this.m12 = -this.m12;
+
+ this.m20 = -this.m20;
+ this.m21 = -this.m21;
+ this.m22 = -this.m22;
+
+ }
+
+ /**
+ * Sets the value of this matrix equal to the negation of
+ * of the Matrix3f parameter.
+ * @param m1 the source matrix
+ */
+ public final void negate(Matrix3f m1)
+ {
+ this.m00 = -m1.m00;
+ this.m01 = -m1.m01;
+ this.m02 = -m1.m02;
+
+ this.m10 = -m1.m10;
+ this.m11 = -m1.m11;
+ this.m12 = -m1.m12;
+
+ this.m20 = -m1.m20;
+ this.m21 = -m1.m21;
+ this.m22 = -m1.m22;
+
+ }
+
+ /**
+ * Multiply this matrix by the tuple t and place the result
+ * back into the tuple (t = this*t).
+ * @param t the tuple to be multiplied by this matrix and then replaced
+ */
+ public final void transform(Tuple3f t) {
+ float x,y,z;
+ x = m00* t.x + m01*t.y + m02*t.z;
+ y = m10* t.x + m11*t.y + m12*t.z;
+ z = m20* t.x + m21*t.y + m22*t.z;
+ t.set(x,y,z);
+ }
+
+ /**
+ * Multiply this matrix by the tuple t and and place the result
+ * into the tuple "result" (result = this*t).
+ * @param t the tuple to be multiplied by this matrix
+ * @param result the tuple into which the product is placed
+ */
+ public final void transform(Tuple3f t, Tuple3f result) {
+ float x,y,z;
+ x = m00* t.x + m01*t.y + m02*t.z;
+ y = m10* t.x + m11*t.y + m12*t.z;
+ result.z = m20* t.x + m21*t.y + m22*t.z;
+ result.x = x;
+ result.y = y;
+ }
+
+ /**
+ * perform SVD (if necessary to get rotational component
+ */
+ void getScaleRotate( double[] scales, double[] rot ) {
+
+ double[] tmp = new double[9]; // scratch matrix
+ tmp[0] = m00;
+ tmp[1] = m01;
+ tmp[2] = m02;
+ tmp[3] = m10;
+ tmp[4] = m11;
+ tmp[5] = m12;
+ tmp[6] = m20;
+ tmp[7] = m21;
+ tmp[8] = m22;
+ Matrix3d.compute_svd(tmp, scales, rot);
+
+ return;
+
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since vecmath 1.3
+ */
+ @Override
+ public Object clone() {
+ Matrix3f m1 = null;
+ try {
+ m1 = (Matrix3f)super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+ return m1;
+ }
+
+
+ /**
+ * Get the first matrix element in the first row.
+ *
+ * @return Returns the m00.
+ *
+ * @since vecmath 1.5
+ */
+ public final float getM00() {
+ return m00;
+ }
+
+ /**
+ * Set the first matrix element in the first row.
+ *
+ * @param m00 The m00 to set.
+ *
+ * @since vecmath 1.5
+ */
+ public final void setM00(float m00) {
+ this.m00 = m00;
+ }
+
+ /**
+ * Get the second matrix element in the first row.
+ *
+ * @return Returns the m01.
+ *
+ *
+ * @since vecmath 1.5
+ */
+ public final float getM01() {
+ return m01;
+ }
+
+ /**
+ * Set the second matrix element in the first row.
+ *
+ * @param m01 The m01 to set.
+ *
+ * @since vecmath 1.5
+ */
+ public final void setM01(float m01) {
+ this.m01 = m01;
+ }
+
+ /**
+ * Get the third matrix element in the first row.
+ *
+ * @return Returns the m02.
+ *
+ * @since vecmath 1.5
+ */
+ public final float getM02() {
+ return m02;
+ }
+
+ /**
+ * Set the third matrix element in the first row.
+ *
+ * @param m02 The m02 to set.
+ *
+ * @since vecmath 1.5
+ */
+ public final void setM02(float m02) {
+ this.m02 = m02;
+ }
+
+ /**
+ * Get first matrix element in the second row.
+ *
+ * @return Returns the m10.
+ *
+ * @since vecmath 1.5
+ */
+ public final float getM10() {
+ return m10;
+ }
+
+ /**
+ * Set first matrix element in the second row.
+ *
+ * @param m10 The m10 to set.
+ *
+ * @since vecmath 1.5
+ */
+ public final void setM10(float m10) {
+ this.m10 = m10;
+ }
+
+ /**
+ * Get second matrix element in the second row.
+ *
+ * @return Returns the m11.
+ *
+ * @since vecmath 1.5
+ */
+ public final float getM11() {
+ return m11;
+ }
+
+ /**
+ * Set the second matrix element in the second row.
+ *
+ * @param m11 The m11 to set.
+ *
+ * @since vecmath 1.5
+ */
+ public final void setM11(float m11) {
+ this.m11 = m11;
+ }
+
+ /**
+ * Get the third matrix element in the second row.
+ *
+ * @return Returns the m12.
+ *
+ * @since vecmath 1.5
+ */
+ public final float getM12() {
+ return m12;
+ }
+
+ /**
+ * Set the third matrix element in the second row.
+ * @param m12 The m12 to set.
+ * @since vecmath 1.5
+ */
+ public final void setM12(float m12) {
+ this.m12 = m12;
+ }
+
+ /**
+ * Get the first matrix element in the third row.
+ *
+ * @return Returns the m20.
+ *
+ * @since vecmath 1.5
+ */
+ public final float getM20() {
+ return m20;
+ }
+
+ /**
+ * Set the first matrix element in the third row.
+ *
+ * @param m20 The m20 to set.
+ *
+ * @since vecmath 1.5
+ */
+ public final void setM20(float m20) {
+ this.m20 = m20;
+ }
+
+ /**
+ * Get the second matrix element in the third row.
+ *
+ * @return Returns the m21.
+ *
+ * @since vecmath 1.5
+ */
+ public final float getM21() {
+ return m21;
+ }
+
+ /**
+ * Set the second matrix element in the third row.
+ *
+ * @param m21 The m21 to set.
+ *
+ * @since vecmath 1.5
+ */
+ public final void setM21(float m21) {
+ this.m21 = m21;
+ }
+
+ /**
+ * Get the third matrix element in the third row .
+ *
+ * @return Returns the m22.
+ *
+ * @since vecmath 1.5
+ */
+ public final float getM22() {
+ return m22;
+ }
+
+ /**
+ * Set the third matrix element in the third row.
+ *
+ * @param m22 The m22 to set.
+ *
+ * @since vecmath 1.5
+ */
+ public final void setM22(float m22) {
+ this.m22 = m22;
+ }
+
+}