1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
|
/*
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
package org.jogamp.vecmath;
/**
* A 4-element quaternion represented by double precision floating
* point x,y,z,w coordinates. The quaternion is always normalized.
*
*/
public class Quat4d extends Tuple4d implements java.io.Serializable {
// Combatible with 1.1
static final long serialVersionUID = 7577479888820201099L;
// Fixed to issue 538
final static double EPS = 1.0e-12;
final static double EPS2 = 1.0e-30;
final static double PIO2 = 1.57079632679;
/**
* Constructs and initializes a Quat4d from the specified xyzw coordinates.
* @param x the x coordinate
* @param y the y coordinate
* @param z the z coordinate
* @param w the w scalar component
*/
public Quat4d(double x, double y, double z, double w)
{
double mag;
mag = 1.0/Math.sqrt( x*x + y*y + z*z + w*w );
this.x = x*mag;
this.y = y*mag;
this.z = z*mag;
this.w = w*mag;
}
/**
* Constructs and initializes a Quat4d from the array of length 4.
* @param q the array of length 4 containing xyzw in order
*/
public Quat4d(double[] q)
{
double mag;
mag = 1.0/Math.sqrt( q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3] );
x = q[0]*mag;
y = q[1]*mag;
z = q[2]*mag;
w = q[3]*mag;
}
/**
* Constructs and initializes a Quat4d from the specified Quat4d.
* @param q1 the Quat4d containing the initialization x y z w data
*/
public Quat4d(Quat4d q1)
{
super(q1);
}
/**
* Constructs and initializes a Quat4d from the specified Quat4f.
* @param q1 the Quat4f containing the initialization x y z w data
*/
public Quat4d(Quat4f q1)
{
super(q1);
}
/**
* Constructs and initializes a Quat4d from the specified Tuple4f.
* @param t1 the Tuple4f containing the initialization x y z w data
*/
public Quat4d(Tuple4f t1)
{
double mag;
mag = 1.0/Math.sqrt( t1.x*t1.x + t1.y*t1.y + t1.z*t1.z + t1.w*t1.w );
x = t1.x*mag;
y = t1.y*mag;
z = t1.z*mag;
w = t1.w*mag;
}
/**
* Constructs and initializes a Quat4d from the specified Tuple4d.
* @param t1 the Tuple4d containing the initialization x y z w data
*/
public Quat4d(Tuple4d t1)
{
double mag;
mag = 1.0/Math.sqrt( t1.x*t1.x + t1.y*t1.y + t1.z*t1.z + t1.w*t1.w );
x = t1.x*mag;
y = t1.y*mag;
z = t1.z*mag;
w = t1.w*mag;
}
/**
* Constructs and initializes a Quat4d to (0,0,0,0).
*/
public Quat4d()
{
super();
}
/**
* Sets the value of this quaternion to the conjugate of quaternion q1.
* @param q1 the source vector
*/
public final void conjugate(Quat4d q1)
{
this.x = -q1.x;
this.y = -q1.y;
this.z = -q1.z;
this.w = q1.w;
}
/**
* Negate the value of of each of this quaternion's x,y,z coordinates
* in place.
*/
public final void conjugate()
{
this.x = -this.x;
this.y = -this.y;
this.z = -this.z;
}
/**
* Sets the value of this quaternion to the quaternion product of
* quaternions q1 and q2 (this = q1 * q2).
* Note that this is safe for aliasing (e.g. this can be q1 or q2).
* @param q1 the first quaternion
* @param q2 the second quaternion
*/
public final void mul(Quat4d q1, Quat4d q2)
{
if (this != q1 && this != q2) {
this.w = q1.w*q2.w - q1.x*q2.x - q1.y*q2.y - q1.z*q2.z;
this.x = q1.w*q2.x + q2.w*q1.x + q1.y*q2.z - q1.z*q2.y;
this.y = q1.w*q2.y + q2.w*q1.y - q1.x*q2.z + q1.z*q2.x;
this.z = q1.w*q2.z + q2.w*q1.z + q1.x*q2.y - q1.y*q2.x;
} else {
double x, y, w;
w = q1.w*q2.w - q1.x*q2.x - q1.y*q2.y - q1.z*q2.z;
x = q1.w*q2.x + q2.w*q1.x + q1.y*q2.z - q1.z*q2.y;
y = q1.w*q2.y + q2.w*q1.y - q1.x*q2.z + q1.z*q2.x;
this.z = q1.w*q2.z + q2.w*q1.z + q1.x*q2.y - q1.y*q2.x;
this.w = w;
this.x = x;
this.y = y;
}
}
/**
* Sets the value of this quaternion to the quaternion product of
* itself and q1 (this = this * q1).
* @param q1 the other quaternion
*/
public final void mul(Quat4d q1)
{
double x, y, w;
w = this.w*q1.w - this.x*q1.x - this.y*q1.y - this.z*q1.z;
x = this.w*q1.x + q1.w*this.x + this.y*q1.z - this.z*q1.y;
y = this.w*q1.y + q1.w*this.y - this.x*q1.z + this.z*q1.x;
this.z = this.w*q1.z + q1.w*this.z + this.x*q1.y - this.y*q1.x;
this.w = w;
this.x = x;
this.y = y;
}
/**
* Multiplies quaternion q1 by the inverse of quaternion q2 and places
* the value into this quaternion. The value of both argument quaternions
* is preservered (this = q1 * q2^-1).
* @param q1 the first quaternion
* @param q2 the second quaternion
*/
public final void mulInverse(Quat4d q1, Quat4d q2)
{
Quat4d tempQuat = new Quat4d(q2);
tempQuat.inverse();
this.mul(q1, tempQuat);
}
/**
* Multiplies this quaternion by the inverse of quaternion q1 and places
* the value into this quaternion. The value of the argument quaternion
* is preserved (this = this * q^-1).
* @param q1 the other quaternion
*/
public final void mulInverse(Quat4d q1)
{
Quat4d tempQuat = new Quat4d(q1);
tempQuat.inverse();
this.mul(tempQuat);
}
/**
* Sets the value of this quaternion to quaternion inverse of quaternion q1.
* @param q1 the quaternion to be inverted
*/
public final void inverse(Quat4d q1)
{
double norm;
norm = 1.0/(q1.w*q1.w + q1.x*q1.x + q1.y*q1.y + q1.z*q1.z);
this.w = norm*q1.w;
this.x = -norm*q1.x;
this.y = -norm*q1.y;
this.z = -norm*q1.z;
}
/**
* Sets the value of this quaternion to the quaternion inverse of itself.
*/
public final void inverse()
{
double norm;
norm = 1.0/(this.w*this.w + this.x*this.x + this.y*this.y + this.z*this.z);
this.w *= norm;
this.x *= -norm;
this.y *= -norm;
this.z *= -norm;
}
/**
* Sets the value of this quaternion to the normalized value
* of quaternion q1.
* @param q1 the quaternion to be normalized.
*/
public final void normalize(Quat4d q1)
{
double norm;
norm = (q1.x*q1.x + q1.y*q1.y + q1.z*q1.z + q1.w*q1.w);
if (norm > 0.0) {
norm = 1.0/Math.sqrt(norm);
this.x = norm*q1.x;
this.y = norm*q1.y;
this.z = norm*q1.z;
this.w = norm*q1.w;
} else {
this.x = 0.0;
this.y = 0.0;
this.z = 0.0;
this.w = 0.0;
}
}
/**
* Normalizes the value of this quaternion in place.
*/
public final void normalize()
{
double norm;
norm = (this.x*this.x + this.y*this.y + this.z*this.z + this.w*this.w);
if (norm > 0.0) {
norm = 1.0 / Math.sqrt(norm);
this.x *= norm;
this.y *= norm;
this.z *= norm;
this.w *= norm;
} else {
this.x = 0.0;
this.y = 0.0;
this.z = 0.0;
this.w = 0.0;
}
}
/**
* Sets the value of this quaternion to the rotational component of
* the passed matrix.
* @param m1 the matrix4f
*/
public final void set(Matrix4f m1)
{
double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + m1.m33);
if (ww >= 0) {
if (ww >= EPS2) {
this.w = Math.sqrt(ww);
ww = 0.25/this.w;
this.x = ((m1.m21 - m1.m12)*ww);
this.y = ((m1.m02 - m1.m20)*ww);
this.z = ((m1.m10 - m1.m01)*ww);
return;
}
} else {
this.w = 0;
this.x = 0;
this.y = 0;
this.z = 1;
return;
}
this.w = 0;
ww = -0.5*(m1.m11 + m1.m22);
if (ww >= 0) {
if (ww >= EPS2) {
this.x = Math.sqrt(ww);
ww = 1.0/(2.0*this.x);
this.y = (m1.m10*ww);
this.z = (m1.m20*ww);
return;
}
} else {
this.x = 0;
this.y = 0;
this.z = 1;
return;
}
this.x = 0;
ww = 0.5*(1.0 - m1.m22);
if (ww >= EPS2) {
this.y = Math.sqrt(ww);
this.z = (m1.m21)/(2.0*this.y);
return;
}
this.y = 0;
this.z = 1;
}
/**
* Sets the value of this quaternion to the rotational component of
* the passed matrix.
* @param m1 the matrix4d
*/
public final void set(Matrix4d m1)
{
double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + m1.m33);
if (ww >= 0) {
if (ww >= EPS2) {
this.w = Math.sqrt(ww);
ww = 0.25/this.w;
this.x = (m1.m21 - m1.m12)*ww;
this.y = (m1.m02 - m1.m20)*ww;
this.z = (m1.m10 - m1.m01)*ww;
return;
}
} else {
this.w = 0;
this.x = 0;
this.y = 0;
this.z = 1;
return;
}
this.w = 0;
ww = -0.5*(m1.m11 + m1.m22);
if (ww >= 0) {
if (ww >= EPS2){
this.x = Math.sqrt(ww);
ww = 0.5/this.x;
this.y = m1.m10*ww;
this.z = m1.m20*ww;
return;
}
} else {
this.x = 0;
this.y = 0;
this.z = 1;
return;
}
this.x = 0.0;
ww = 0.5*(1.0 - m1.m22);
if (ww >= EPS2) {
this.y = Math.sqrt(ww);
this.z = m1.m21/(2.0*this.y);
return;
}
this.y = 0;
this.z = 1;
}
/**
* Sets the value of this quaternion to the rotational component of
* the passed matrix.
* @param m1 the matrix3f
*/
public final void set(Matrix3f m1)
{
double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + 1.0);
if (ww >= 0) {
if (ww >= EPS2) {
this.w = Math.sqrt(ww);
ww = 0.25/this.w;
this.x = ((m1.m21 - m1.m12)*ww);
this.y = ((m1.m02 - m1.m20)*ww);
this.z = ((m1.m10 - m1.m01)*ww);
return;
}
} else {
this.w = 0;
this.x = 0;
this.y = 0;
this.z = 1;
return;
}
this.w = 0;
ww = -0.5*(m1.m11 + m1.m22);
if (ww >= 0) {
if (ww >= EPS2) {
this.x = Math.sqrt(ww);
ww = 0.5/this.x;
this.y = (m1.m10*ww);
this.z = (m1.m20*ww);
return;
}
} else {
this.x = 0;
this.y = 0;
this.z = 1;
return;
}
this.x = 0;
ww = 0.5*(1.0 - m1.m22);
if (ww >= EPS2) {
this.y = Math.sqrt(ww);
this.z = (m1.m21/(2.0*this.y));
}
this.y = 0;
this.z = 1;
}
/**
* Sets the value of this quaternion to the rotational component of
* the passed matrix.
* @param m1 the matrix3d
*/
public final void set(Matrix3d m1)
{
double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + 1.0);
if (ww >= 0) {
if (ww >= EPS2) {
this.w = Math.sqrt(ww);
ww = 0.25/this.w;
this.x = (m1.m21 - m1.m12)*ww;
this.y = (m1.m02 - m1.m20)*ww;
this.z = (m1.m10 - m1.m01)*ww;
return;
}
} else {
this.w = 0;
this.x = 0;
this.y = 0;
this.z = 1;
return;
}
this.w = 0;
ww = -0.5*(m1.m11 + m1.m22);
if (ww >= 0) {
if (ww >= EPS2) {
this.x = Math.sqrt(ww);
ww = 0.5/this.x;
this.y = m1.m10*ww;
this.z = m1.m20*ww;
return;
}
} else {
this.x = 0;
this.y = 0;
this.z = 1;
return;
}
this.x = 0;
ww = 0.5*(1.0 - m1.m22);
if (ww >= EPS2) {
this.y = Math.sqrt(ww);
this.z = m1.m21/(2.0*this.y);
return;
}
this.y = 0;
this.z = 1;
}
/**
* Sets the value of this quaternion to the equivalent rotation
* of the AxisAngle argument.
* @param a the AxisAngle to be emulated
*/
public final void set(AxisAngle4f a)
{
double mag,amag;
// Quat = cos(theta/2) + sin(theta/2)(roation_axis)
amag = Math.sqrt( a.x*a.x + a.y*a.y + a.z*a.z);
if( amag < EPS ) {
w = 0.0;
x = 0.0;
y = 0.0;
z = 0.0;
} else {
mag = Math.sin(a.angle/2.0);
amag = 1.0/amag;
w = Math.cos(a.angle/2.0);
x = a.x*amag*mag;
y = a.y*amag*mag;
z = a.z*amag*mag;
}
}
/**
* Sets the value of this quaternion to the equivalent rotation
* of the AxisAngle argument.
* @param a the AxisAngle to be emulated
*/
public final void set(AxisAngle4d a)
{
double mag,amag;
// Quat = cos(theta/2) + sin(theta/2)(roation_axis)
amag = Math.sqrt( a.x*a.x + a.y*a.y + a.z*a.z);
if( amag < EPS ) {
w = 0.0;
x = 0.0;
y = 0.0;
z = 0.0;
} else {
amag = 1.0/amag;
mag = Math.sin(a.angle/2.0);
w = Math.cos(a.angle/2.0);
x = a.x*amag*mag;
y = a.y*amag*mag;
z = a.z*amag*mag;
}
}
/**
* Performs a great circle interpolation between this quaternion
* and the quaternion parameter and places the result into this
* quaternion.
* @param q1 the other quaternion
* @param alpha the alpha interpolation parameter
*/
public final void interpolate(Quat4d q1, double alpha) {
// From "Advanced Animation and Rendering Techniques"
// by Watt and Watt pg. 364, function as implemented appeared to be
// incorrect. Fails to choose the same quaternion for the double
// covering. Resulting in change of direction for rotations.
// Fixed function to negate the first quaternion in the case that the
// dot product of q1 and this is negative. Second case was not needed.
double dot,s1,s2,om,sinom;
dot = x*q1.x + y*q1.y + z*q1.z + w*q1.w;
if ( dot < 0 ) {
// negate quaternion
q1.x = -q1.x; q1.y = -q1.y; q1.z = -q1.z; q1.w = -q1.w;
dot = -dot;
}
if ( (1.0 - dot) > EPS ) {
om = Math.acos(dot);
sinom = Math.sin(om);
s1 = Math.sin((1.0-alpha)*om)/sinom;
s2 = Math.sin( alpha*om)/sinom;
} else{
s1 = 1.0 - alpha;
s2 = alpha;
}
w = s1*w + s2*q1.w;
x = s1*x + s2*q1.x;
y = s1*y + s2*q1.y;
z = s1*z + s2*q1.z;
}
/**
* Performs a great circle interpolation between quaternion q1
* and quaternion q2 and places the result into this quaternion.
* @param q1 the first quaternion
* @param q2 the second quaternion
* @param alpha the alpha interpolation parameter
*/
public final void interpolate(Quat4d q1, Quat4d q2, double alpha) {
// From "Advanced Animation and Rendering Techniques"
// by Watt and Watt pg. 364, function as implemented appeared to be
// incorrect. Fails to choose the same quaternion for the double
// covering. Resulting in change of direction for rotations.
// Fixed function to negate the first quaternion in the case that the
// dot product of q1 and this is negative. Second case was not needed.
double dot,s1,s2,om,sinom;
dot = q2.x*q1.x + q2.y*q1.y + q2.z*q1.z + q2.w*q1.w;
if ( dot < 0 ) {
// negate quaternion
q1.x = -q1.x; q1.y = -q1.y; q1.z = -q1.z; q1.w = -q1.w;
dot = -dot;
}
if ( (1.0 - dot) > EPS ) {
om = Math.acos(dot);
sinom = Math.sin(om);
s1 = Math.sin((1.0-alpha)*om)/sinom;
s2 = Math.sin( alpha*om)/sinom;
} else{
s1 = 1.0 - alpha;
s2 = alpha;
}
w = s1*q1.w + s2*q2.w;
x = s1*q1.x + s2*q2.x;
y = s1*q1.y + s2*q2.y;
z = s1*q1.z + s2*q2.z;
}
}
|