1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
/*
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
package org.jogamp.vecmath;
/**
* A 3-element vector that is represented by single-precision floating point
* x,y,z coordinates. If this value represents a normal, then it should
* be normalized.
*
*/
public class Vector3f extends Tuple3f implements java.io.Serializable {
// Combatible with 1.1
static final long serialVersionUID = -7031930069184524614L;
/**
* Constructs and initializes a Vector3f from the specified xyz coordinates.
* @param x the x coordinate
* @param y the y coordinate
* @param z the z coordinate
*/
public Vector3f(float x, float y, float z)
{
super(x,y,z);
}
/**
* Constructs and initializes a Vector3f from the array of length 3.
* @param v the array of length 3 containing xyz in order
*/
public Vector3f(float[] v)
{
super(v);
}
/**
* Constructs and initializes a Vector3f from the specified Vector3f.
* @param v1 the Vector3f containing the initialization x y z data
*/
public Vector3f(Vector3f v1)
{
super(v1);
}
/**
* Constructs and initializes a Vector3f from the specified Vector3d.
* @param v1 the Vector3d containing the initialization x y z data
*/
public Vector3f(Vector3d v1)
{
super(v1);
}
/**
* Constructs and initializes a Vector3f from the specified Tuple3f.
* @param t1 the Tuple3f containing the initialization x y z data
*/
public Vector3f(Tuple3f t1) {
super(t1);
}
/**
* Constructs and initializes a Vector3f from the specified Tuple3d.
* @param t1 the Tuple3d containing the initialization x y z data
*/
public Vector3f(Tuple3d t1) {
super(t1);
}
/**
* Constructs and initializes a Vector3f to (0,0,0).
*/
public Vector3f()
{
super();
}
/**
* Returns the squared length of this vector.
* @return the squared length of this vector
*/
public final float lengthSquared()
{
return (this.x*this.x + this.y*this.y + this.z*this.z);
}
/**
* Returns the length of this vector.
* @return the length of this vector
*/
public final float length()
{
return (float)
Math.sqrt(this.x*this.x + this.y*this.y + this.z*this.z);
}
/**
* Sets this vector to be the vector cross product of vectors v1 and v2.
* @param v1 the first vector
* @param v2 the second vector
*/
public final void cross(Vector3f v1, Vector3f v2)
{
float x,y;
x = v1.y*v2.z - v1.z*v2.y;
y = v2.x*v1.z - v2.z*v1.x;
this.z = v1.x*v2.y - v1.y*v2.x;
this.x = x;
this.y = y;
}
/**
* Computes the dot product of this vector and vector v1.
* @param v1 the other vector
* @return the dot product of this vector and v1
*/
public final float dot(Vector3f v1)
{
return (this.x*v1.x + this.y*v1.y + this.z*v1.z);
}
/**
* Sets the value of this vector to the normalization of vector v1.
* @param v1 the un-normalized vector
*/
public final void normalize(Vector3f v1)
{
float norm;
norm = (float) (1.0/Math.sqrt(v1.x*v1.x + v1.y*v1.y + v1.z*v1.z));
this.x = v1.x*norm;
this.y = v1.y*norm;
this.z = v1.z*norm;
}
/**
* Normalizes this vector in place.
*/
public final void normalize()
{
float norm;
norm = (float)
(1.0/Math.sqrt(this.x*this.x + this.y*this.y + this.z*this.z));
this.x *= norm;
this.y *= norm;
this.z *= norm;
}
/**
* Returns the angle in radians between this vector and the vector
* parameter; the return value is constrained to the range [0,PI].
* @param v1 the other vector
* @return the angle in radians in the range [0,PI]
*/
public final float angle(Vector3f v1)
{
double vDot = this.dot(v1) / ( this.length()*v1.length() );
if( vDot < -1.0) vDot = -1.0;
if( vDot > 1.0) vDot = 1.0;
return((float) (Math.acos( vDot )));
}
}
|