1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
/*
* Anarres C Preprocessor
* Copyright (c) 2007-2008, Shevek
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
package org.anarres.cpp;
import java.math.BigDecimal;
import java.math.BigInteger;
import javax.annotation.CheckForNull;
import javax.annotation.Nonnegative;
import javax.annotation.Nonnull;
public class NumericValue extends Number {
public static final int F_UNSIGNED = 1;
public static final int F_INT = 2;
public static final int F_LONG = 4;
public static final int F_LONGLONG = 8;
public static final int F_FLOAT = 16;
public static final int F_DOUBLE = 32;
public static final int FF_SIZE = F_INT | F_LONG | F_LONGLONG | F_FLOAT | F_DOUBLE;
private final int base;
private final boolean negative;
private final String integer;
private String fraction;
private String exponent;
private int flags;
public NumericValue(int base, boolean negative, String integer) {
this.base = base;
this.negative = negative;
this.integer = integer;
}
@Nonnegative
public int getBase() {
return base;
}
public boolean isNegative() {
return negative;
}
@Nonnull
public String getIntegerPart() {
return integer;
}
@CheckForNull
public String getFractionalPart() {
return fraction;
}
/* pp */ void setFractionalPart(String fraction) {
this.fraction = fraction;
}
@CheckForNull
public String getExponent() {
return exponent;
}
/* pp */ void setExponent(String exponent) {
this.exponent = exponent;
}
public int getFlags() {
return flags;
}
/* pp */ void setFlags(int flags) {
this.flags = flags;
}
/**
* So, it turns out that parsing arbitrary bases into arbitrary
* precision numbers is nontrivial, and this routine gets it wrong
* in many important cases.
*/
@Nonnull
public BigDecimal toBigDecimal() {
int scale = 0;
String text = getIntegerPart();
String t_fraction = getFractionalPart();
if (t_fraction != null) {
text += getFractionalPart();
// XXX Wrong for anything but base 10.
scale += getFractionalPart().length();
}
if (getExponent() != null)
scale -= Integer.parseInt(getExponent());
BigInteger unscaled = new BigInteger(text, getBase());
return new BigDecimal(unscaled, scale);
}
@Nonnull
public Number toJavaLangNumber() {
int flags = getFlags();
if ((flags & F_DOUBLE) != 0)
return doubleValue();
else if ((flags & F_FLOAT) != 0)
return floatValue();
else if ((flags & (F_LONG | F_LONGLONG)) != 0)
return longValue();
else if ((flags & F_INT) != 0)
return intValue();
else if (getFractionalPart() != null)
return doubleValue(); // .1 is a double in Java.
else if (getExponent() != null)
return doubleValue();
else
return intValue();
}
private double exponentValue() {
int e = Integer.parseInt(exponent, base);
return Math.pow(base, e);
}
@Override
public int intValue() {
int v = integer.isEmpty() ? 0 : Integer.parseInt(integer, base);
if (exponent != null)
v = (int) (v * exponentValue());
return isNegative() ? -v : v;
}
@Override
public long longValue() {
long v = integer.isEmpty() ? 0 : Long.parseLong(integer, base);
if (exponent != null)
v = (long) (v * exponentValue());
return isNegative() ? -v : v;
}
@Override
public float floatValue() {
if (getBase() != 10)
return longValue();
return Float.parseFloat(toString());
}
@Override
public double doubleValue() {
if (getBase() != 10)
return longValue();
return Double.parseDouble(toString());
}
private boolean appendFlags(StringBuilder buf, String suffix, int flag) {
if ((getFlags() & flag) != flag)
return false;
buf.append(suffix);
return true;
}
@Override
public String toString() {
StringBuilder buf = new StringBuilder();
if (isNegative())
buf.append('-');
switch (base) {
case 8:
buf.append('0');
break;
case 10:
break;
case 16:
buf.append("0x");
break;
case 2:
buf.append('b');
break;
default:
buf.append("[base-").append(base).append("]");
break;
}
buf.append(getIntegerPart());
if (getFractionalPart() != null)
buf.append('.').append(getFractionalPart());
if (getExponent() != null) {
buf.append(base > 10 ? 'p' : 'e');
buf.append(getExponent());
}
/*
if (appendFlags(buf, "ui", F_UNSIGNED | F_INT));
else if (appendFlags(buf, "ul", F_UNSIGNED | F_LONG));
else if (appendFlags(buf, "ull", F_UNSIGNED | F_LONGLONG));
else if (appendFlags(buf, "i", F_INT));
else if (appendFlags(buf, "l", F_LONG));
else if (appendFlags(buf, "ll", F_LONGLONG));
else if (appendFlags(buf, "f", F_FLOAT));
else if (appendFlags(buf, "d", F_DOUBLE));
*/
return buf.toString();
}
}
|